NAMES OF IONS

To properly discuss ions and ionic compounds, we have to know how to name them!
 CATIONS

3 kinds:

Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge!

Polyatomic cations

- Memorize list.

: "Iron(III) ion"

ANIONS

2 kinds

Main-group nonmetals

- Use the STEM NAME of the element, then add "-ide" suffix

N³: "nitride" ion P³: "phosphide ion" S: Sulfide Iun

O : "oxide ion" F : "fluoride ion"

Polyatomic ions

- Memorize list.(see web site)

 $C_2H_3O_2$: "acetate ion" SO_4 : "sulfate ion"

 NO_3 : "nitrate ion" SO_3^2 "sulfite ion"

NO₂: "nitrite ion"

* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

NAMING IONIC COMPOUNDS

- The name of the compound is based on the name of the ions in the compound
- Cation first, anion second

Examples:

magnesium hydroxide

sodium sulfide

beryllium bromide

iron(III) oxide

$$\frac{Cu^{\frac{+2}{2}}O^{2}}{+2}$$

copper(II) oxide

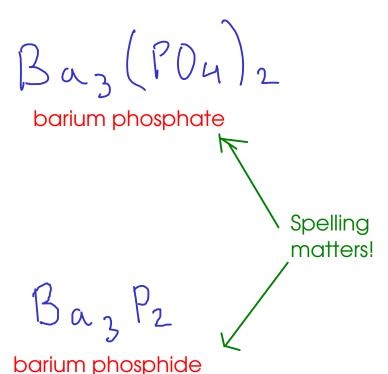
$$\frac{Cu^{+}O^{2}-Cu$$

copper(I) oxide

Remember to include the Roman numeral for CHARGE in the name of transition metal compounds!

Page 63 (9th edition): Chart of polyatomic ions

(NH4)25


ammonium sulfide

Fe CO3

TiSz Ti 49 S²titanium(IV) sulfide $\frac{5^{2}}{-9}$ (TiS = titanium (II) sulfide!)

(a(NO3))

calcium nitrate

- The name of an ionic compound is made of the names of the CATION and ANION in the compound.
- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

Examples:

iron(III) carbonate

potassium sulfide

$$\frac{k^{+}}{k^{+}}$$

calcium bromide

DETERMINING IONIC FORMULAS

sodium sulfate

$$\frac{N_{\alpha}^{+}}{N_{\alpha}^{+}} = \frac{SO_{4}^{2}}{N_{\alpha}^{2}}$$

$$\frac{N_{\alpha}^{+}}{N_{\alpha}^{2}} = \frac{SO_{4}^{2}}{N_{\alpha}^{2}}$$

tin(II) phosphate

barium hydroxide

Don't forget the parenthesis when you have more than one hydroxide ion!

chromium(III) nitrate

$$Cr^{3+}$$
 NO_3^-
 NO_3^-
 NO_3^-
 $Cr(NO_3)_3$

titanium(IV) chloride

HYDRATES

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.
- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

water molecules per formula unit of compound

CuSou SH20

dot indicates that the water is weakly bound to the ionic compound

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)

- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated

copper (11) sulfate pentahydrate "copper(II)"?

MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

- molecular compounds that dissolve in water to release $\overrightarrow{\mathsf{H}}^\mathsf{T}$ ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

Group VIIA

- contain hydrogen and one other element

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT

- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

SECOND ELEMENT

- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

MEMORIZE THE GREEK PREFIXES. SEE COURSE WEB SITE FOR A LIST! THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

Examples:

BF3

boron trifluoride

(1207

dichlorine heptaoxide (OR dichlorine heptoxide) CC

carbon monoxide

 CO_2

carbon dioxide

*Note: metalloids like boron behave chemically like nonmetals do.

carbon tetrachloride

C (4

dihydrogen monoxide

HZC

dinitrogen tetrafluoride

N2 Fy

: magnesium CHLORIDE (not "dichloride"). We must use the naming system for IONIC compounds for this one.

We can tell that this compound is ionic because it contains a metal joined to a nonmetal. Metal/nonmetal compounds are usually ionic.