
IA	1	PREDICTING CHARGE															VIIIA
Н	IIA) You can reliably determine the charge using our +												VA	VI)A	VIIA	Не
Li	Ве	me	ethod	for G	Froups A, VIA	iA, II	В	С	N	0	F	V 0 Ne					
Na	Mg	IIIB	IVB	VB	VIB	VIIB	<u> </u>	√IIIB		IB) IIB	AJ	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	>	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	(Br)	Z6 Kr
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ва	ľa	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"inner" transition metals go here								

Aluminum (Al): At atomic number 13, it is three electrons away from neon (Ne), and 5 electrons away from argon (Ar). Prediction: Aluminum will lose three electrons to form the cation Al

Bromine (Br): At atomic number 35, bromine is one electron away from krypton (Kr). Prediction: Bromine will gain one electron to form the anion Br

Strontium (Sr): At atomic number 38, strontium is two electrons away from krypton. Prediction: Strontium will lose two electrons to form the cation Sr

Find the formulas of:

(1) an ionic compound containing AI and Br

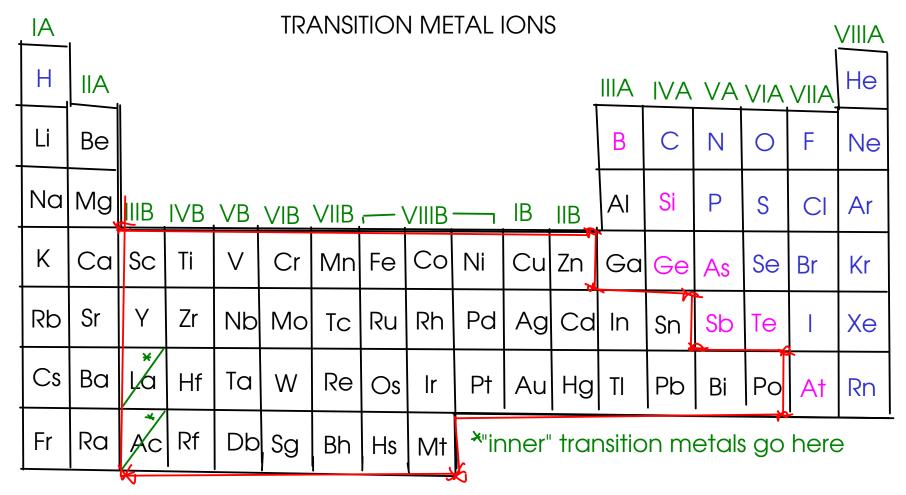
(2) an ionic compound containing Mg and O

(3) an ionic compound containing S and K

Find the formula of:

* an ionic compound containing AI and Br

Find the formula of:


* an ionic compound containing Mg and O

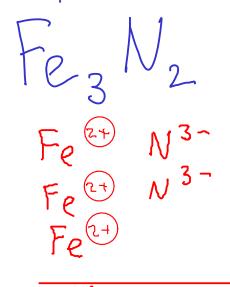
$$\frac{Mg^{2+}}{MgO}$$

Find the formula of:

* an ionic compound containing S and K

Remember: When writing the formulas of ionic compounds, always put the CATION first!

The transition metals always form CATIONS!

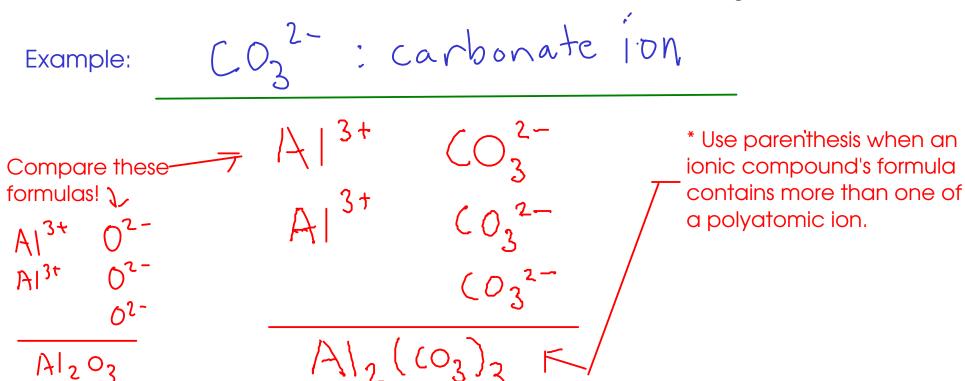

However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!

Example: Iron (Fe) forms two cations, depending on the situation: Fe or Fe

TRANSITION METAL CATIONS

- So how do you know which cation you're dealing with? For now, you'll have to be told
- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

Examples:



This compound has iron ions with a +2 charge. This form of iron is called "iron(II)" pronounced "iron two"!

This compound has iron ions with a +3 charge. This form of iron is called "iron(III)" pronounced "iron three"!

POLYATOMIC IONS

- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS
- Polyatomic ions form ionic compounds in the same way that single-element ions do.

A chart of common polyatomic ions is available on the course web site!