VSEPR and large molecules

- Large molecules have more than one "center" atom
- Describe the molecule by describing the shape around each "center".

- 11 POLARITY and shape:
 - A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged.

POLARITY influences several easily observable properties.

- Melting point. (Polar substances have higher melting points than nonpolar substances of similar molecular weight.)
- Boiling point. (Polar substances have higher boiling points than nonpolar substances of similar molecular weight.)
- Solubility. (Polar substances tend to dissolve in other polar substances, while being insoluble in nonpolar substances. Nonpolar substances dissove other nonpolar substances, and generally have poor solubility in polar solvents.)
- Polar molecules contain POLAR BONDS arranged in such a way that they do not cancel each other out.
 - ... but how can we tell whether or not a bond will be POLAR? Use experimental data on ELECTRONEGATIVITY!

ELECTRONEGATIVITY:

- -A measure of how closely to itself an atom will hold shared electrons
- A bond where there is a LARGE electronegativity difference between atoms will be either POLAR or (for very large differences) IONIC!
- A bond with little or no electronegativity difference between atoms will be NONPOLAR

ELECTRONEGATIVITY TRENDS

- You may look up elecronegativity data in tables, but it helps to know trends!

INCREASING
ELECTRO-

	Ι Λ																<u> </u>	NEC	'/-
4	IA ——											4	IIIA	IVA	VA	VIA	VIIA	_ /	Î
2	Li	Ве											В	С	Ν	0	F		
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB	<u> </u>	√IIIB		IB	IIB	Al	Si	Р	S	CI		
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br		
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те			
6	Cs	Ва	ļa	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At		
7	Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	go	here	<u>-</u>	
	N	ote	S 1				-		•										

- (1) FLUORINE is the most elecronegative element, while FRANCIUM is the least!
- ② All the METALS have low electronegativity, and metal/nonmetal combinations form IONIC bonds
- 3 HYDROGEN is similar in electronegativity to CARBON, so C-H bonds are considered NONPOLAR

Examples:

Polar or nonpolar?

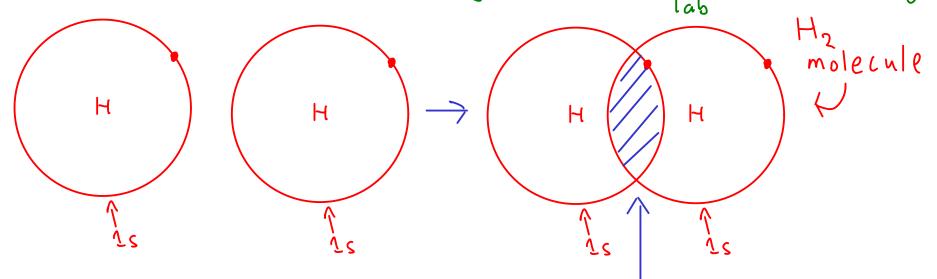
- * POLAR BONDS? YES: Big electronegativity difference between C and F
 * GEOMETRY: Tetrahedral. All C-F bonds are arraquage
 - * GEOMETRY: Tetrahedral. All C-F bonds are arragnated symmetrically around the center. So the molecule is **NONPOLAR**

Polar or nonpolar?

- * POLAR BONDS? YES: Big electronegativity difference between C and F. C-H bonds are NONPOLAR.
- * GEOMETRY: Tetrahedral. Fluorine will pull electrons towards itself. The fluorine end of the molecule will have a slight negative charge. POLAR MOLECULE

Polar or nonpolar?

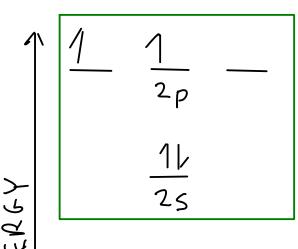
- * POLAR BONDS? YES: Big electronegativity difference between C and F. C-H bonds are NONPOLAR.
- * GEOMETRY: Tetrahedral. Fluorines will pull electrons towards themselves. In three dimensions, the fluorine atoms are on one side of the molecule, while the hydrogens are on the other. POLAR MOLECULE


 $0:6\times2=12$:0 = C = 0; between C and O.

Polar or nonpolar?

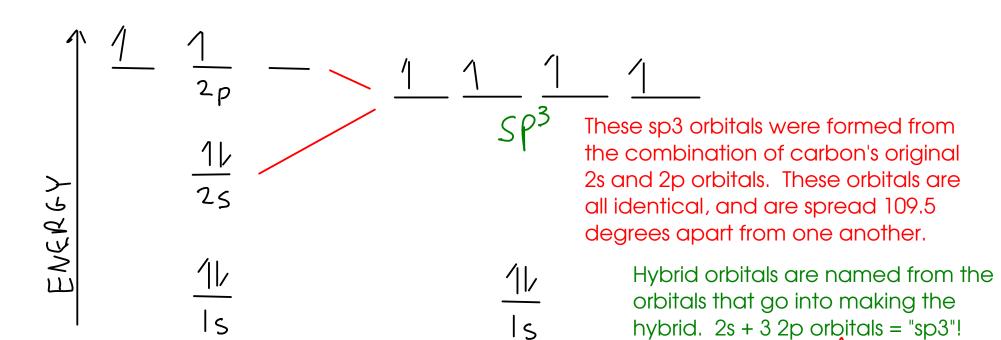
- * POLAR BONDS? YES: Big electronegativity difference
- * GEOMETRY: Linear. The two C=O bonds are directly opposite one another, so the overall molecule is nonpolar.

VALENCE BOND THEORY


- an attempt to explain why molecules behave in the way that the VSEPR model predicts.
- Describes the formation of bonds in terms of the OVERLAP of ORBITALS from the bonding atoms.
 - Bonds are formed when two atoms are close enough together so that their ORBITALS OVERLAP (share the same space).
 - Each SET of overlapping orbitals can contain at most a total of TWO electrons. So, two orbitals with one electron each may bond. An orbital with two electrons can only bond with an EMPTY orbital (This is called a COORDINATE COVALENT BOND.) * Ag* with: NH3... The cleanur in the AgCI lab

These 1s orbitals overlap to form what we call a "sigma bond" with overlap BETWEEN the two atomic nuclei.

Hybridization


- Look at carbon's electron configuration:

You would expect that carbon would form several different kinds of bonds in a molecule like methane. But, methane's bonds are experimentally all identical. How does carbon form the four equivalent C-H bonds we see in methane?

We observe that these bonds are IDENTICAL! Same bond energy, distance, and angle.

- In valence bond theory, atomic orbitals can COMBINE to make new orbitals that can then go on to bond with other molecules.
 - When orbitals combine to make HYBRID ORBITALS, ...
 - The overall NUMBER OF ORBITALS does not change.
 - The overall NUMBER OF ELECTRONS around the atom does not change
 - The energy of the orbitals is between the energies of the orbitals that combine.

p392: picture of hybrids

Types of hybrid orbitals:

Hybrid type	Number of orbitals	Molecular shape					
sp	2	linear					
sp2	3	trigonal planar					
sp3	4	tetrahedral (or derivatives)					
sp3d	5	trigonal bipyramidal (or derivatives)					
sp3d2	6	octahedral (or derivatives)					

p392: picture of hybrids