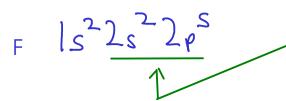


"s" block: last electron in these atoms is in an "s" orbital!

"p" block: last electron in these atoms is in a "p" orbital!


"d" block: last electron in these atoms is in a "d" orbital

- To write an electron configuration using the periodic table, start at hydrogen, and count up the electrons until you reach your element!

Example: Phosphorus (P): $1 \stackrel{?}{_{\sim}} 2 \stackrel{$

EXAMPLES:

Remember - valence electrons are ALL of the electrons in the outermost SHELL (n)! More that one subshell (I) may be included in the valence electrons

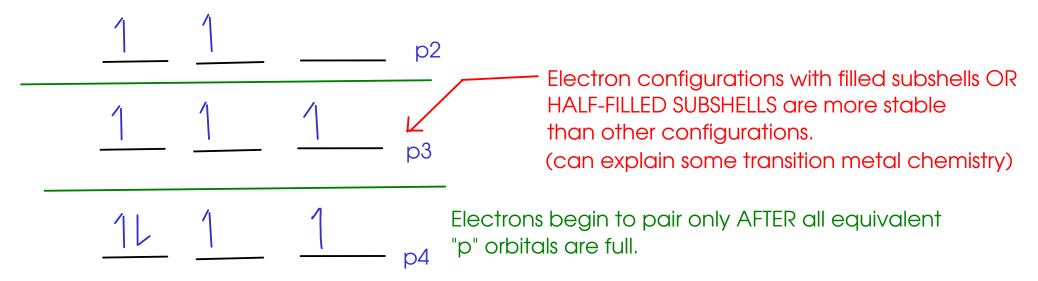
TITANIUM is a transition metal that commonly forms either +2 or +4 cations. The 4s electrons are lost when the +2 ion forms, while the 4s AND 3d electrons are lost to form the +4!

You can order the subshells in numeric order OR

Ti
$$15^{2}25^{2}2p^{6}35^{2}3p^{6}34^{2}45^{2}$$
 or $15^{2}25^{2}2p^{6}35^{2}3p^{6}45^{2}34^{2}$ or $15^{2}34^{2}45^{2}$

Se
$$1s^2 2s^2 2p^6 3s^2 3p^6 3a^{10} 4s^2 4p^4$$

Or $[Ac] 3a^{10} 4s^2 4p^4$


Noble gas core notation. Use

Noble gas core notation. Use the previous noble gas on the table, then add the electrons that it doesn't have to the end.

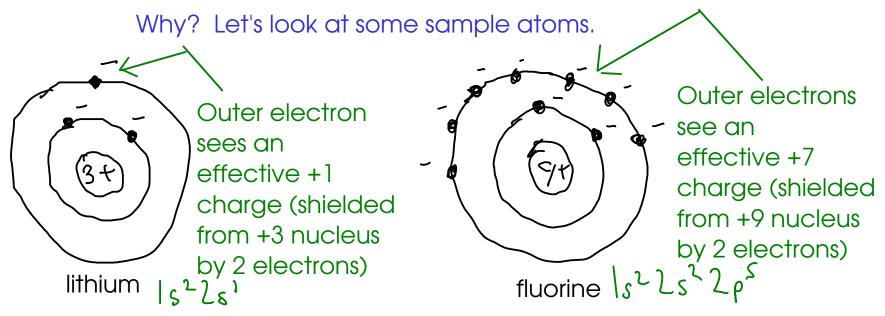
Sample f-block element

Hund's Rule

- When you have two or more orbitals with equivalent energy, electrons will go into each equivalent orbital BEFORE pairing. Pairing costs a bit of energy - less than going to a higher-energy orbital, but more than going to another equivalent orbital.

Experimental evidence for Hund's rule:

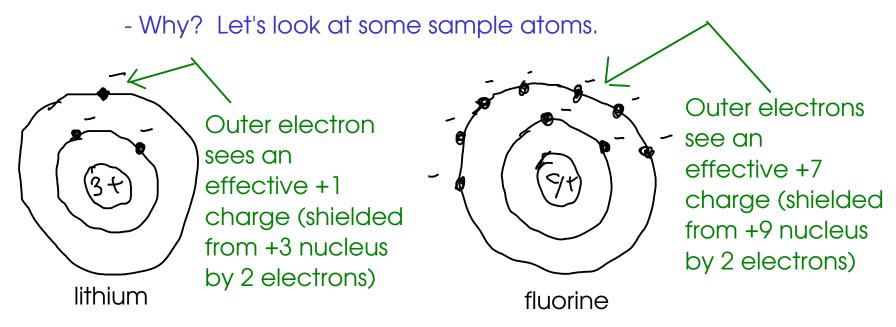
"Paramagnetism" - attraction of an atom to a magnetic field


- Spinning electrons are magnetic, but OPPOSITE spins cancel each other out.
- Atoms with unpaired electrons are paramagnetic, while atoms containing only paired electrons are not.

PERIODIC TRENDS

- Some properties of elements can be related to their positions on the periodic table.

ATOMIC RADIUS


- The distance between the nucleus of the atoms and the outermost shell of the electron cloud.
- Relates to the size of the atom.
- As you go DOWN A GROUP ($\sqrt{}$), the atomic radius INCREASES.
 - Why? As you go down a period, you are ADDING SHELLS!
- As you go ACROSS A PERIOD (\longrightarrow), the atomic radius DECREASES

... so fluorine's outer shell is pulled closer to the nucleus than lithium's!

(FIRST) IONIZATION ENERGY

- The amount of energy required to remove a single electron from the outer shell of an atom.
- Relates to reactivity for metals. The easier it is to remove an electron, the more reactive the metal.
- As you go DOWN A GROUP (\downarrow), the ionization energy DECREASES.
 - Why? As you go down a period, you are ADDING SHELLS. Since the outer electrons are farther from the nucleus and charge attraction lessens with distance, this makes electrons easier to remove as the atoms get bigger!
- As you go ACROSS A PERIOD (——), the ionization energy INCREASES.

... since fluorine's outer electrons are held on by a larger effective charge, they are more difficult to remove than lithium's.

LARGER IONIZATION ENERGY

SMALLER RADIUS

1	IA	l															\	√IIIA
	Н	IIA	•									-	IIIA	IVA	VA	VIA.	VIIA	Не
	Li	Ве											В	С	Ν	0	F	Ne
	Na	Mg	IIIB	IVB	VB	VIB	VIIB	<u>, </u>	√IIIB :		IB	IIB	Al	Si	Р	S	CI	Ar
	K	Ca	Sc	Ti	V	Cr	Mn		Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	Cs	Ва	ļ'a	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	go	here)

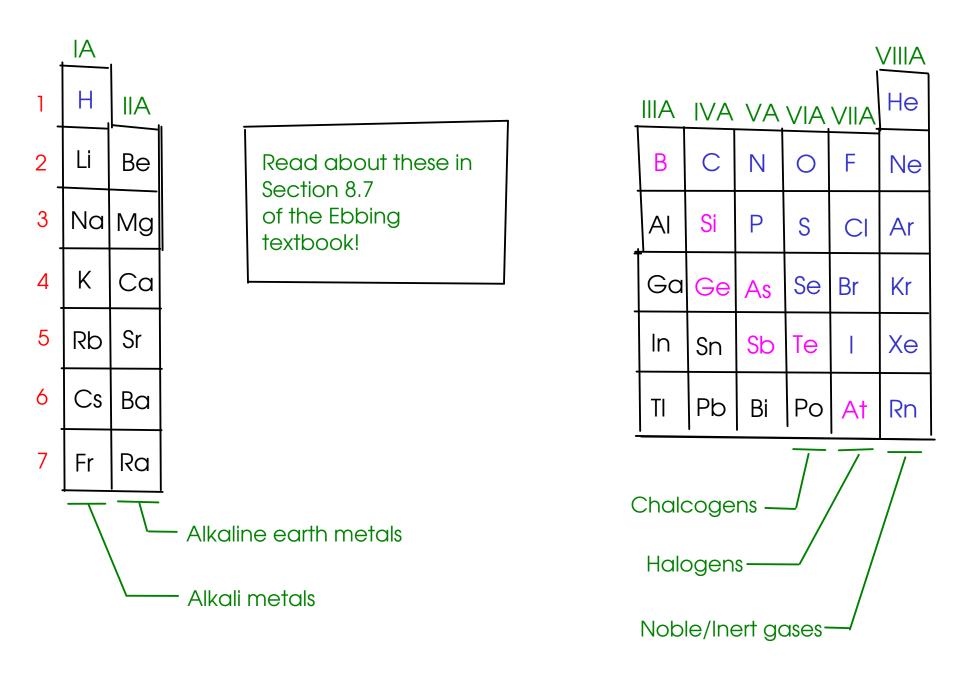
LARGER SMALLER RADIUS IONIZATION ENERGY

ELECTRON AFFINITY

- the electron affinity is the ENERGY CHANGE on adding a single electron to an atom.
 - Atoms with a positive electron affinity cannot form anions.
 - The more negative the electron affinity, the more stable the anion formed!
- General trend: As you move to the right on the periodic table, the electron affinity becomes more negative.

EXCEPTIONS

- Group IIA does not form anions (positive electron affinity)!


valence electrons for Group IIA!

period number
- To add an electron, the atom must put it into a higher-energy
(p) subshell.

- Group VA: can form anions, but has a more POSITIVE electron affinity than IVA

- Group VIIIA (noble gases) does not form anions

"MAIN" or "REPRESENTATIVE" GROUPS OF THE PERIODIC TABLE

The representative (main) groups GROUP IA - the alkali metals

valence electrons:

- React with water to form HYDROXIDES

- Alkali metal OXIDES also form bases when put into water. (This is related to METALLIC character. The more metallic something is, the more basic its oxide. Nonmetals have ACIDIC oxides!) M_2O

- Physical properties: All of these elements are soft metals with relatively low melting points.

GROUP IIA - the alkaline earth metals

valence electrons:

ns

- May react with water in a reaction similar to the alkali metals, producing hydroxides and hydrogen gas. For some of the alkaline earth metals, this reaction takes place at a significant rate only at high temperatures..
- Form basic oxides, formula: M O
- These elements are soft and low-melting ... but harder and higher melting than alkali metals.
- The name "alkaline earth" comes from the observation that the "earths" (oxides) of these metals are basic.

GROUP IIIA

valence electrons:

- most of the elements in this group are metals, but there is also a semiconductor (boron).
- The oxides of these elements are of the form $M_2 O_3$
- oxides of boron are acidic (metalloids tend to behave more like nonmetals in the acidity of their oxides).
- Aluminum and gallium have AMPHOTERIC oxides (react as acids or bases), and the larger Group IIIA oxides are basic
- These elements do not react directly with water to make hydroxides, unlike Groups IA and IIA.

GROUP IVA

valence electrons NS²h p²

- -contains some elements of each type: nonmetal, metalloid, and metal.
- oxides range from acidic to amphoteric, with formulas MO_2 or MO (C, Pb form both,)
- don't react with water to make hydroxides

GROUP VA

valence electrons $NS^2N\rho^3$

- -range from nonmetal to metallic, but with only one metal (bismuth).
- Oxides of group VA nonmetals are acidoc, while the group VA metalloids have amphoteric oxides. Bismuth's oxide is basic
- Formulas of these oxides vary considerably, but the most common variants are: RO_2 , RO_3

GROUP VIA - the chalcogens

valence electrons

- Like Group VA, formulas of oxides of these elements vary. Common ones are: RO_{2} , RO_{3}
- mostly nonmetals/metalloids, plus one metal (polonium). Oxides range from acidic to amphoteric.
- This group's name means "ore producers" Many metal ores contain oxygen and/or sulfur!

GROUP VIIA - the halogens

electron configuration:

- react with water, but form ACIDS when they do so! (ex: chlorine and water make HCI and HOCI).
- Oxides of the halogens are not very stable, but they are acidic.
- nonmetals, exist primarily as DIATOMIC MOLECULES.
- halogens are very similar in their chemical reactions, even though their physical appearance varies considerably!
- This group's name means "salt formers" (think sodium chloride)

GROUP VIIIA - the noble or inert gases

electron configuration:

- characterized by their lack of chemical reactivity. The lighter noble gases have no known compounds, while the heavier ones sometimes form molecules with reactive elements like oxygen and fluorine.
- exist primarily as single (uncombined) atoms NOT diatomic molecules like the halogens.