## FORMATION REACTIONS

- A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25C and 1 atm pressure.

$$
\begin{aligned}
& \mathrm{CO}_{2}(\mathrm{~g}): \mathrm{C}(\mathrm{~s}, \text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(y) ; \Delta 4=-393 \text {, 5kJ } \\
& \begin{array}{l}
\text { Lead of formation of carbon dioxide } \Delta H_{f}^{0} \text { or } \Delta H_{f} \\
\text { "enthral by of formation" }
\end{array} \\
& C O(g): C(5, \text { graphite })+\frac{1}{2} O_{2}(g) \rightarrow(O(g) ; \Delta H=-110.5 \mathrm{~kJ}
\end{aligned}
$$

you may see fractional coefficients in these formation reactions, because you MUST form exactly one mole of the product!

- The heat of formation for an element in its standard state at 25 C and 1 atm is ZERO.

$$
\Delta H_{f,}^{0} O_{2}(g)=O \mathrm{~kJ} / \mathrm{mol}
$$

- What are formation reactions good for?
... finding enthalpies for more interesting reactions!

Let's say we would like to find the enthalpy of reaction for this equation:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}:$ ?
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add.


Hess' Law using enthalpy of formation:

$$
\begin{aligned}
& \Delta H=\sum \Delta H_{f, \text { products }}-\sum \Delta H_{f_{1} \text { reactants }} \\
& \Delta H=\left(\begin{array}{cc}
\mathrm{CO}_{2} & \mathrm{H}_{2} \mathrm{O} \\
4(-393.5)+2(-241.8)
\end{array}\right)-\left(\begin{array}{cc}
\mathrm{C}_{2} \mathrm{H}_{2} & \mathrm{O}_{2} \\
2(226.7)+S(0)
\end{array}\right) \\
& =-2511 K J
\end{aligned}
$$

See Appendix $C$ in the textbook for enthalpy of formation data: p A-8 to A-1 1

* Remember:
- Multiply each enthalpy by its stoichiometric coefficient from the reaction
- Enthalpy of formation of an element at its standard state is zero
- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!
- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS!

Example problems:

$$
2 \mathrm{H}_{2}^{2.016}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=-484 \mathrm{~kJ}
$$

Calculate the enthalpy change for the combustion of 1.00 kg of hydrogen gas.
1 - Convert 1 kg of hydrogen gas to moles using the formula weight of hydrogen gas
2 - Convert moles hydrogen gas to enthalpy change using thermochemical equation

$$
\begin{aligned}
& 2.016 \mathrm{~g} \mathrm{H}_{2}=\mathrm{mol} \mathrm{H}_{2} \quad \mathrm{Kg}=10^{3} \mathrm{~g} \quad 2 \mathrm{~mol} \mathrm{H}=-484 \mathrm{~kJ} \\
& \text { 1.00 } \mathrm{Hg} \mathrm{H}_{2} \times \frac{1 \mathrm{O}^{3} \mathrm{~g}}{\mathrm{Kg}} \times \frac{\mathrm{mol} \mathrm{H}_{2}}{2.016 \mathrm{gH}_{2}} \times \frac{-484 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{H}}=\begin{array}{c}
-120000 \mathrm{HJ} \\
\text { per } \mathrm{Hg} \mathrm{H}
\end{array}
\end{aligned}
$$

NW: 46.026

$$
2 \mathrm{HCHO}(l)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

If 50.3 kJ of heat was released when 5.48 g of formic acid are burned at constant pressure, then what is the enthalpy change of this reaction per mole of formic acid?

$$
\Delta H=\frac{Q_{\text {constant } P}}{\text { moles } H C H O_{2}}=7
$$

$$
Q=-50.3 k J
$$

Find mol $\mathrm{HCHO} \mathrm{CH}_{2}: \quad 46.026 \mathrm{gHCHO}_{2}=\operatorname{mol} \mathrm{HCHO}$

$$
\begin{aligned}
& 5.48 \mathrm{gHCHO}_{2} \times \frac{\mathrm{mol} \mathrm{H} \mathrm{CHO}_{2}}{46.026 \mathrm{gHCHO}_{2}}=0.114063 \mathrm{~mol} \mathrm{HCHO} \\
& \Delta H=\frac{Q_{\text {cushat }}}{\text { mules } \mathrm{HCHO}}=\frac{-50.3 \mathrm{KJ}}{0.119063 \mathrm{~mol} \mathrm{HCHO}_{2}}=-422 \mathrm{hJ} / \mathrm{mol} \mathrm{HCHO}
\end{aligned}
$$

Based on the calculation above, can we complete this thermochemical equation?

$$
2 \mathrm{HCHO}(l)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) ; \Delta H=-844 \mathrm{l}
$$

We calculated the heat per ONE MOLE of formic acid, while this equation is written on the basis of TWO MOLES of formic acid being burned.

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=-906 \mathrm{~kJ}
$$

What is the enthalpy change when 150. L of nitrogen monoxide are formed by this reaction at 25.0 C and 1.50 atm pressure?

1 - Convert volume of NO to moles using the ideal gas equation
2 - Convert moles NO to enthalpy change using thermochemical equation

| $P V=n R T$ | $P=1.50$ atm | $R=0.08206 \frac{\mathrm{Lratm}}{\text { mol .K }}$ |
| :--- | :--- | :--- |
| $\frac{P V}{R T}=n$ | $V=150 . \mathrm{L}$ | $T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}$ |$\quad n=? ? ?$

(1) $n_{N O}=\frac{\left(1,50 \mathrm{~atm}_{m}\right)(150 . L)}{\left(0.08206 \frac{\mathrm{Lratm}}{\text { mol.k }}\right)(298.2 \mathrm{~K})}=9.19482 \mathrm{~mol} \mathrm{NO}$

$$
\begin{aligned}
& 4 \mathrm{~mol} N O=-906 \mathrm{hJ} \\
& 9.19482 \mathrm{~mol} \mathrm{NO} \times \frac{-906 \mathrm{hJ}}{4 \mathrm{~mol} \mathrm{NO}}=-2080 \mathrm{~kJ}=\Delta H
\end{aligned}
$$

