Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaCl}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g of sodium carbonate (mass) to moles using the formula weight.
2 - Convert moles sodium carbonate to moles hydrochloric acid using chemical equation.
3 - Convert moles hydrochloric acid to volume using concentration (6.00 moles / L)

$$
\begin{aligned}
& \text { (1) } \mathrm{Na}_{2} \mathrm{CO}_{3} ; \quad \begin{aligned}
& \mathrm{Na}: 2 \times 22.99 \\
& \mathrm{c}: 1 \times 12.01 \\
& 0: \frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3}} \\
& 25.0 \mathrm{~g} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3} \times \frac{\text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned} \\
& \hline
\end{aligned}
$$

(2) 2 mol $\mathrm{HCl}=1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Na}} \mathrm{Na}_{3} \mathrm{CO}=0.4717426172 \mathrm{mul} \mathrm{HCl}
$$

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert mass sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles hydrochloric acid. Use chemical equation.
3 - Convert moles hydrochloric acid to volume. Use concentration (6.00 M)
(3) $6.00 \mathrm{~mol} \mathrm{HCl}=L \quad m L=10^{-3} \mathrm{~L}$

$$
0.4717426172 \mathrm{mul} \mathrm{HC} 3 \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL}
$$

If you like, you can solve the entire problem on one line and enter everything into the calculator at once!

$$
25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}}{10 \mathrm{CO} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3}} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL}
$$

EXAMPLE PROBLEM:

$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}_{(s)}
$$

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

1 - Convert 2545 g of chlorine gas to moles using the formula weight of chlorine gas.
2 - Convert moles chlorine gas to moles sodium metal using chemical equation.
3 - Convert moles sodium chloride to mass using formula weight of sodium metal.
(1) $\mathrm{Cl}_{2}: 2 \times 35.45: 70.9 \mathrm{~g} \mathrm{Cl}_{2}=\mathrm{mol} \mathrm{Cl}_{2}$ (2) $2 \mathrm{~mol} \mathrm{Na}=\mathrm{mol} \mathrm{Cl} 2$
(3) $22.99 \mathrm{gNa}=\mathrm{mol} \mathrm{Na}$

$$
254 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{\mathrm{molCl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{\mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{22.99 \mathrm{gNa}}{\mathrm{~mol} \mathrm{Na}}=1650 . \mathrm{gNa}_{\mathrm{a}}
$$

