$25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
H_{2}+C 1_{2} \rightarrow 2 H C 1
$$

1 - Convert volume of chlorine gas to moles using ideal gas equation
2 - Convert moles of chlorine gas to moles of HCl using the chemical equation
3 - Convert moles of HCl to mass using the formula weight of HCl

$$
\begin{array}{l|l}
P V=n R T & P=1.00 \mathrm{~atm} \quad V=2500 \mathrm{~L} \\
\hline \frac{P V}{R T}=n & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n=? ? ?
\end{array}
$$

(1) $n=\frac{P V}{R T}=\frac{(1.00 \mathrm{~atm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~h}}\right)(298.2 \mathrm{~K})}=102.1647 \mathrm{~mol} \mathrm{Cl} 2$

$$
\begin{gathered}
\text { mol } \mathrm{Cl}_{2}=2 \mathrm{~mol} \mathrm{HCl}|36.458 \mathrm{gHCl}=\mathrm{mol} H C 1| \mathrm{Kg}=10^{3} \mathrm{~g} \\
102.1647 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{2 \mathrm{mor}}{\mathrm{~mol}} \times \frac{36.458 \mathrm{gHCl}}{\text { mol } \mathrm{HCl}} \times \frac{\mathrm{Kg}}{10^{3} \mathrm{~g}}=7.4 \mathrm{SHCHHCl}
\end{gathered}
$$

Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

*Volume of a $10^{\prime} \times 10^{\prime} \times 8^{\prime}$ room
1 - Convert the volume of oxygen gas to moles using the ideal gas law
2 - Convert the moles of oxygen gas to mass using formula weight.

$$
\begin{array}{l|l}
P V=n R T & P=1.18 \mathrm{~atm} V=22650 \mathrm{~L} \quad R=0.08206 \frac{\mathrm{Latm}}{\mathrm{molok}} \\
\frac{P V}{O T}=n & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}
$$

(1) $n=\frac{(1.18 \mathrm{~atm})(2265 \mathrm{OL})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})}=1092.222 \mathrm{~mol} \mathrm{O}_{2}$

$$
\begin{aligned}
& 32.00 \mathrm{gO}_{2}=\mathrm{mol} \mathrm{O}_{2} \\
& 1092.222 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g}_{2}}{\mathrm{molO}}=35000 \mathrm{gO} \quad\left(\begin{array}{l}
35.0 \mathrm{~kg} \\
(\text { about } 77 \mathrm{lb})
\end{array}\right.
\end{aligned}
$$

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?
We need to find:

$$
\underline{M}_{\text {of }} \mathrm{HCl}=\frac{\text { moles } \mathrm{HCl}}{L \text { solution }}=0,04890 \mathrm{~L}
$$

1 - Convert volume of carbon dioxide gas to moles using ideal gas equation
2 - Convert moles of carbon dioxide gas to moles HCl using chemical equation
3 - Divide moles $\mathrm{HCl} / 0.04890 \mathrm{~L}$ to get concentration

$$
n=\frac{P V}{R T} \left\lvert\, \begin{aligned}
& P=0.950 \mathrm{~atm} \quad V=125.0 \mathrm{~mL}=0.12 \mathrm{SOL} \quad R=0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{H}}
\end{aligned}\right.
$$

(1) $n_{\mathrm{CO}_{2}}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{mol} \cdot \mathrm{H}}\right)(290.2 \mathrm{~K})}=0.0049866 \mathrm{~mol} \mathrm{CO} 2$

$$
2 \mathrm{molHCl}=\operatorname{molCO} 2
$$

(2) $0.0049866 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{mol} \mathrm{CO}}=0.0099732 \mathrm{~mol} \mathrm{HCl}$
(3) $\mathrm{M}_{\mathrm{HCl}}=\frac{\text { mules } H \mathrm{Cl}}{L_{\text {Solution }}}=\frac{0.0099732 \mathrm{mul} \mathrm{HCJ}}{0,04890 \mathrm{~L}}=0,204 \mathrm{M} \mathrm{HCl}$

