GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$
\begin{aligned}
& P V=\text { constant } \\
P_{1} V_{1}=\text { constant } & P_{2} V_{2}=\text { constant } \\
& \rightarrow P_{1} V_{1}=P_{2} V_{2}
\end{aligned} \text { True at constant temperature }
$$

Charles's Law:

$$
\begin{aligned}
& \frac{V}{T}=\text { constant } \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array} \\
& \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array}
\end{aligned}
$$

Combined gas law:

Avogadro's law:

L amount (moles) ot gas must be

- a mole of any gas at the same conditions has the same volume.

1 mol gas molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR" Standard volume $=22.4 \mathrm{~L}$
 Temperature and Pressure

Ideal gas law:

CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{CO}_{2}(g)+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert mass sodium bicarbonate to moles (formula weight of sodium bicarbonate)
2 - Convert moles sodium bicarbonate to moles carbon dioxide using chemical equation
3 - Convert moles carbon dioxide to volume using the ideal gas equation

$$
\begin{align*}
& 84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\text { mol } \mathrm{NaHCO}_{3} \mid 2 \text { mol } \mathrm{NaHCO}_{3}=2 \operatorname{mol} \mathrm{CO}_{2} \\
& 25 . \mathrm{O}_{\mathrm{g}} \mathrm{NaHCO}_{3} \times \frac{\operatorname{mol~} \mathrm{NaHCO}_{3}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{NaHCO}}=0.297594 \mathrm{~mol} \mathrm{CO}_{2} \tag{1}
\end{align*}
$$

(3)

$$
\begin{aligned}
& P V=n R T \quad n=0.297594 \mathrm{mo})\left(0_{2} \quad P=0.950\right. \text { atm } \\
& V=n R T \quad R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} / \mathrm{K}} T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& V=? ? \text { ? } \\
& V=\frac{(0.297594 \mathrm{mo})\left(\mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} / \mathrm{K}}\right)(298.2 \mathrm{~K})}{(0.950 \mathrm{crtm})}=7.67 \mathrm{LK} \mathrm{O}_{2}
\end{aligned}
$$

What volume would the gas in the last example problem have at STP?

$$
\text { STR: } O^{\circ} \mathrm{C}, 1 \text { atm }
$$

STP: "Standard Temperature and Pressure" (0 C and 1 atm)
Solve this one using the combined gas law. We know all the initial conditions (P, V, and T)

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \quad V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}\left|\begin{array}{l}
P_{1}=0,950 \text { arm } \\
V_{1}=7,67 \mathrm{~L} \\
T_{2}=0^{\circ} \mathrm{C}=273 \mathrm{k}
\end{array}\right| \begin{aligned}
& T_{1}=25.0^{\circ} \mathrm{C}=298.2 \mathrm{k} \\
& P_{2}=1 \text { atm }
\end{aligned}
$$

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{(0,950 \mathrm{arm})\left(7,67 L_{2}\right)(273 \mathrm{k})}{(298.2 \mathrm{k})(1 \text { atm })}=\frac{6.67 \mathrm{~L} \mathrm{I}_{2} \omega S T P}{1}
$$

Alternate solution: Since we knew the number of moles, we could also use the ideal gas equation to solve this problem. You'll get the same answer doing it that way.

