- To get a single oxygen atom from molecular oxygen, we need HALF of a molecule. So, to get 5 oxygen atoms, we need 5/2 oxygen molecules.
- To get rid of the fraction, multiply EVERY coefficient by the denominator of the fraction (2 in this case).

$$2C_2H_2 + 50_2 \rightarrow 4CO_2 + 2H_2O$$

$$H_2SO_H + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O V$$
H: 2
0: 4
2] 6
4 236

IDENTIFYING REACTIONS

You may see one or more of these signs when a chemical reaction occurs

- (1) A <u>change in tempera</u>ture that can't be explained in another way.
- (2) Emission of light that can't be explained in another way
- 3 The formation of a solid or PRECIPITATION in a previously liquid solution. (Not a simple phase change!) or gas formation.
- (4) Color change (not simply lightening of color caused by diluting a solution!)

- It's simpler to talk about different reactions if we can classify them into a small number of classes.
- Most of these reaction classes are reactions that involve TRANSFER OF ELECTRONS from one atom to another. The LAST class or reactions we will discuss does NOT involve electron transfer!

COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_{1}O_{2}(e) \longrightarrow 2 H_{2}O(e) + O_{2}(g)$$

- * This reaction is NOT a combustion reaction, even though O₂ is involved!
- * Combustion reactions CONSUME O_2 , while this reaction PRODUCES O_2

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:

$$AB + O_{2} \longrightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Oxides!

$$\begin{array}{c} \times \\ \text{C3H8}(9) + 502(9) \longrightarrow 4 \text{H2U}(9) + 3002(9) \end{array}$$

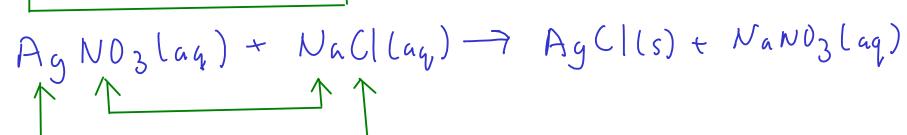
$$2mg(s) + O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (more on that later!)

- Easy to spot, since there is an element "by itself" on each side of the equation.



DOUBLE REPLACEMENT REACTIONS

- Also called "exchange" reactions
- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

- Can be predicted based on the characteristics of the potential products (More on that later!)
- Occur in AQUEOUS SOLUTION

- Do not involve electron transfer. Examples: $3 \text{ Mg (12 (nq) + 2 Na_3 PO_4 (nq)} \longrightarrow \text{ Mg3 (PO_4)_2(s) + 6 Na(I(nq))}$ $1 \text{ Mg (Inq) + 2 Na_3 PO_4 (nq)} \longrightarrow \text{ Mg3 (PO_4)_2(s) + 6 Na(I(nq))}$

