Consider an 0.100 M solution of the weak base ammonia:

$$NH_{3}$$
; $K_{b} = 1.75 \times 10^{-5}$

What is the pH?

$$NH_{3}(a_{4}) + H_{2}O(l) \rightleftharpoons NH_{4}^{+}(a_{6}) + OH^{-}(a_{6})$$

$$K_{b} = 1,7S \times 10^{-S} = [NH_{4}^{+}][OH^{-}]$$

$$ENH_{3}]$$

Which term in this expression are we really interested in? Solve to get the HYDROXIDE concentration, since it can be easily related to hydronium (and pH).

Species	[Initial]	\triangle	[Eavilibrium]
NH_4^+	0	+ X	×
он-	0	+ X	X
NHZ	0.100	- X	0.100-X

Plug into the equilibrium expression

$$1.75 \times 10^{-5} = \frac{(\chi)(\chi)}{(0.100 - \chi)} = \frac{\chi^2}{0.100 - \chi}$$

Solve for 'x':

1.75 χ | 0^{-S} = $\frac{\chi^2}{0.100 - \chi}$ This is a QUADRATIC EQUATION. But, we expect that 'x' will be small compared to 0.100. So we can simplify this equation $\chi < < 0.100 - \chi \approx 0.100 - \chi \approx 0.100$ | .75 χ 10^{-S} = $\frac{\chi^2}{0.100}$ 0.0013226757 = $\chi = \text{EOH}^-$] HYDROXIDE ion concentration!

$$-\log_{10} (0.0013228757) = 2.88 = POH$$

$$PH + POH = 14.00$$

$$S0, PH = 14.00 - 2.88 = 11.12$$

If you had used the quadratic equation to solve this problem, you would have gotten a pH of 11.12 - no difference from this method, at least to two significant figures! Compare pH to the pH of an 0.100 M solution of the strong base NaOH:

The higher the Ka or Kb value, the stronger the acid or base!

Find the pH and the degree of ionization for an 0.10 M solution of formic acid: $HCHO_2$

$$H(HO_2(n_q) + H_2O(l) \stackrel{=}{=} H_30^+ (n_q) + (HO_2^- (n_q))$$

$$K_a = [H_30^+][(HO_2^-]] = 1,7 \times 10^{-4}$$
Constant's value at 25 C obtained from chart in textbook, page A-13

Species	[Initial]	\bigtriangleup	[Gquilibrium]
H30+	0	+ X	X
Сно2-	0	+ X	λ
HCHOZ	0.10	- X	O ,10 - X

$$1.7 \times 10^{-4} = \frac{(x)(x)}{0.10^{-5}}$$

$$1.7 \times 10^{-4} = \frac{\chi^2}{0.10 - \chi}$$

1.7 x 10⁻⁴ =
$$\frac{\chi^2}{0.10 - \chi}$$
 Assume that x is much smaller than 0.10
1.7 x 10⁻⁴ = $\frac{\chi^2}{0.10}$ This number is indeed much smaller than 0.10
x = 0.0041231056 = $[H_30^+]$
pH 2 -lug₁₀ (0.0041231056) = $[2.38 = \rho H]$

Degree of ionization? DEGREE OF IONIZATION is the fraction of a weak electrolyte (acid or base) that dissociates in water.

$$\frac{[(HO_2)]}{[H(HO_2)]} = \frac{[H_30^+]}{[H(HO_2)]} = \frac{0.004[23]056}{0.10} = 0.04[2]0.04[2]0.04[2]0.01.$$

Sometimes, we express degree of ionization as a percent ... PERCENT IONIZATION

... so about 96% of this acid exists in solution as undissociated formic acid molecules.

(WEAK acids exist in solution mostly as undissociated molecules!)

An aqueous solution of 0.25 M trimethylamine has a pH of 11.63. What's the value of Kb? $((H_3)_3 N)$

$$(CH_{3})_{3}N(n_{q}) + H_{2}O(\ell) \rightleftharpoons (CH_{3})_{3}NH^{+}(n_{q}) + OH^{-}(n_{q})$$

$$K_{b} = \underline{\Gamma}(CH_{3})_{3}NH^{+}][OH^{-}]_{2} P_{1}$$

$$\Gamma (CH_{3})_{3}N]$$

Species	[Initial]	\triangle	[Equilibrium]
((Hz)zNH+	0	+ ×	×
0H-	6	+ X	X
((H3)3 N	0,25	- X	0,25-X

$$K_b = \frac{(x)(x)}{(0.25 \cdot x)}$$

$$\left| \zeta_{b} \right| = \frac{\chi^{2}}{0.25 - \chi}$$

If we want to know what Kb is, we need to find the value of 'x', but NOT by solving this equation.

$$\left| \chi_{b} \right| = \frac{\chi^{2}}{0.25 \cdot \chi}$$

X = [0H]

... but concentration of hydroxide is related to pH

$$K_{b} = \frac{\chi^{2}}{0.25 - \chi} = \frac{(0.0042657952)^{2}}{0.25 - 0.0042657952}$$

$$K_{b} = 7.4 \times 10^{-5}$$