Consider an 0.100 M solution of the weak base ammonia:

$$
\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.75 \times 10^{-5}
$$

What is the pH ?

$$
\begin{array}{r}
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{b}=1,75 \times 1 \mathrm{O}^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{array}
$$

Which term in this expression are we really interested in? Solve to get the HYDROXIDE concentration, since it can be easily related to hydronium (and pH).

Species	[Initial $]$	Δ	$[$ Gavilibrivm $]$
$\mathrm{NH}_{4}{ }^{+}$	0	$+X$	X
OH^{-}	0	$+X$	X
NH_{3}	0.100	$-X$	$0.100-X$

Plug into the equilibrium expression

$$
1.75 \times 10^{-5}=\frac{(x)(x)}{(0.100-x)}=\frac{x^{2}}{0.100-x}
$$

Solve for ' x ':

$$
\begin{aligned}
& \begin{aligned}
1.7 S_{x} 10^{-5} & \left.=\frac{x^{2}}{0.100-x}\right] \begin{array}{l}
\text { This is a QUADRATIC EQU } \\
\text { 'x' will be small compare } \\
\text { this equation }
\end{array} \\
& \qquad \ll 0.100 \text {, so } 0.100-x \approx 0.100
\end{aligned} \\
& 1.75 \times 10^{-5}=\frac{x^{2}}{0.100} \\
& 0.0013228757=X=\left[\mathrm{OH}^{-}\right] \quad \text { HYDROXIDE ion concentration! } \\
& -\log _{10}(0.0013228757)=2.88=\mathrm{pOH} \\
& \text { pH } H \text { oOH }=14.00 \\
& \text { If you had used the } \\
& \text { quadratic equation to } \\
& \text { So, } p H=14.00-2.88=11.12 \\
& \text { solve this problem, } \\
& \text { you would have gotten } \\
& \text { a pH of } 11.12 \text { - no difference } \\
& \text { from this method, at least } \\
& \text { to two significant figures! }
\end{aligned}
$$

Compare pH to the pH of an 0.100 M solution of the strong base NaOH :

$$
\mathrm{pH}_{1 \mathrm{NH}_{3}}=11.12
$$

$$
\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}
$$

$$
\left[\mathrm{OH}^{-}\right]=0.100
$$

$$
\text { OOH }=1.00
$$

$$
\begin{aligned}
& \mathrm{PH}+\text { POL }=14.00 \\
& \mathrm{PH}=13.00
\end{aligned}
$$

The higher the Ka or Kb value, the stronger the acid or base!

Find the pH and the degree of ionization for an 0.10 M solution of formic acid: HCHO

$$
\begin{array}{r}
\mathrm{H}\left(\mathrm{HO}_{2}\left(\mathrm{aq}_{q}\right)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}\left(u_{q}\right)+\left(\mathrm{HO}_{2}^{-}\left(\mathrm{aqq}^{2}\right)\right.\right. \\
\mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{[\mathrm{HCHO}]}=1.7 \times 10^{-4}
\end{array}
$$

Constant's value at 25 C obtained from chart in textbook, page A-13

Species	[Initial]	Δ	[Equilibrium $]$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
$\mathrm{CHO}_{2}{ }^{-}$	0	$+X$	X
HCHO_{2}	0.10	$-X$	$0.10-x$

$$
\begin{aligned}
& 1.7 \times 10^{-4}=\frac{(x)(x)}{0.10-x} \\
& 1.7 \times 10^{-4}=\frac{x^{2}}{0.10-x}
\end{aligned}
$$

$$
\begin{aligned}
1.7 \times 10^{-4} & =\frac{x^{2}}{0.10-x} \quad \text { Assume that } x \text { is much smaller than } 0.10 \\
1.7 \times 10^{-4} & =\frac{x^{2}}{0.10} \quad \begin{array}{l}
\text { This number is indeed much smaller } \\
\text { than } 0.10
\end{array} \\
x & =0.0041231056=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
p H & =-\log _{10}(0.004123 \operatorname{lu5} 6)=2.38=\mathrm{pH}
\end{aligned}
$$

Degree of ionization? DEGREE OF IONIZATION is the fraction of a weak electrolyte (acid or base) that dissociates in water.

$$
\left.\frac{\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{H}_{(H O}^{2}\right.}\right]=\frac{\left[\mathrm{H}_{3}{ }^{+}\right]}{\left[\mathrm{H}\left(\mathrm{HO}_{2}\right]\right.}=\frac{0.0041231056}{0.10}=0.041=0.0 . I .
$$

Sometimes, we express degree of ionization as a percent ... PERCENT IONIZATION

$$
\%=D 0 I \times 100 \%=0.041 \times 100 \%=4.1 \% \text { ionized }
$$

... so about 96% of this acid exists in solution as undissociated formic acid molecules.
(WEAK acids exist in solution mostly as undissociated molecules!)

An aqueous solution of 0.25 M trimethylamine has a pH of 11.63 . What's the value of Kb ?

$$
\left(\left(\mathrm{H}_{3}\right)_{3} N\right.
$$

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
K_{b}=\frac{\left[\left(\left(\mathrm{C}_{3}\right)_{3} N \mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]\right.}{\left[\left(C u_{3}\right)_{3} N\right]}=?
$$

Species	[Initial $]$	Δ	$\left[E_{\text {quil,brium }}\right]$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$	0	$+X$	X
OH^{-}	0	$+X$	X
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	0.2 S	$-x$	$0.25-x$

$$
\begin{aligned}
& K_{b}=\frac{(x)(x)}{(0.25-x)} \\
& K_{b}=\frac{x^{2}}{0.25-x}
\end{aligned}
$$

If we want to know what kb is, we need to find the value of ' x ', but NOT by solving this equation.

$$
K_{b}=\frac{x^{2}}{0.25-x}
$$

$$
x=\left[\mathrm{OH}^{-}\right]
$$

... but concentration of hydroxide is related to pH

$$
\begin{aligned}
& \mathrm{PH}+\rho \mathrm{\rho H}=14,00 \\
& 11,63+\rho O H=14.00 \\
& \rho O H=2.37 \\
& {\left[O 4^{-}\right]=10^{-2.37} } \\
& {\left[O H^{-}\right]=0.0042657952 }
\end{aligned}
$$

So, $x=0.0042657952$

$$
\begin{aligned}
& K_{b}=\frac{x^{2}}{0.25-x}=\frac{(0.0042657952)^{2}}{0.25-0.0042657952} \\
& K_{b}=7.4 \times 10^{-5}
\end{aligned}
$$

