CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

2 atoms $A \mid=3$ molecules $B r_{2}=2$ formula units $A \mid B_{r_{3}}$

$$
2 \operatorname{mol} A\left|=3 \mathrm{~mol} B_{r_{2}}=2 \mathrm{~mol} A\right| B r_{3} *
$$

(1) - Relate the amount of substance we know (mass or volume) to a number of moles
(2) - Relate the moles of one substance to the moles of another using the equation
(3) - Convert the moles of the new substance to mass or volume as desired

$$
2 A\left|(s)+3 B r_{2}(l)>2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert the 25.0 g of bromine to moles. Use formula weight.

$$
\begin{aligned}
& 1 S 9.8 \mathrm{gBr}_{2}=\mathrm{mol} \mathrm{Br}_{2} \\
& 25.0 \mathrm{~g} \mathrm{Br} \\
& 2 \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{1 S 9.8 \mathrm{~g} \mathrm{Br}_{2}}=0.1564456 \mathrm{~mol} B r_{2}
\end{aligned}
$$

(2) Convert the moles bromine to moles aluminum. Use chemical equation.

$$
\begin{gathered}
2 \mathrm{~mol} A 1=3 \mathrm{~mol} B r_{2} \\
0.1564456 \mathrm{~mol} B r_{2} \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}=0.104297038 \mathrm{~mol} \mathrm{Al}
\end{gathered}
$$

(3) Convert the moles aluminum to mass. Use formula weight. Al:26.98

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=\operatorname{mol} A \mid \\
& 0.104297038 \mathrm{~mol} A \left\lvert\, \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\operatorname{mol} A 1}=2.81 \mathrm{gAl}\right.
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
\begin{aligned}
& 5.0 \mathrm{gBr} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.8 \cdot \mathrm{grr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}_{2}} \times \frac{26.98 \mathrm{gAl}}{1 \mathrm{~mol} A 1}=2.81 \mathrm{~g} \mathrm{Al} \\
& 25.0 \text { y } \mathrm{Br}_{2}<\text { Conservation of mass! } \\
& +\frac{2.81 \mathrm{~g} \mathrm{Al}}{27.8 \mathrm{~g} \mathrm{AlBr}_{3}} \\
& \text { But ... } \\
& \text {...what would you have done to calculate the mass of aluminum } \\
& \text { bromide IF you had NOT been asked to calculate the mass of } \\
& \text { aluminum FIRST? } \\
& 25,0 \mathrm{yBr} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.8 \mathrm{~g} \mathrm{Br}_{2}} \times \frac{2 \mathrm{molAlBr}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.68 \mathrm{gAlBr}_{3}}{1 \mathrm{molAlBr}_{3}}=27.8 \mathrm{y} \mathrm{AlBr}_{3} \\
& A \backslash B r_{3}: A 1=1 \times 26.98 \\
& \text { Br: }=\frac{3 \times 79.90}{266.68}
\end{aligned}
$$

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert mass sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles hydrochloric acid. Use chemical equation.
3 - Convert moles hydrochloric acid to volume. Use concentration (6.00 M)
(1)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}_{4}: 2 \times 22.98 \\
& \text { C: } 1 \times 12.01 \\
& \left.0: \frac{3 \times 16.00}{105.99} \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{mo}\right) \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 2 \mathrm{SOg} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na} \mathrm{CO}_{3}}{10 \mathrm{S.99} \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3}
\end{aligned}
$$

(2) $2 \operatorname{molHCl}=1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{NO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
\underline{\mathrm{HCl}}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 -Convert mass sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles hydrochloric acid. Use chemical equation.
3 - Convert moles hydrochloric acid to volume. Use concentration (6.00 M)
(3) $6,00 \mathrm{~mol} \mathrm{HCl}=L \quad \mathrm{~mL}=10^{-3} \mathrm{~L}$

$$
0.4717426172 \mathrm{~mol} \mathrm{HC}) \times \frac{\mathrm{L}}{6,00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL}
$$

You can put all of this on one line if you like.

$$
25,0 \mathrm{~g} \mathrm{Na} 22 \mathrm{CO}_{3} \times \underbrace{\frac{\mathrm{mol} \mathrm{Na}}{2} \mathrm{CO}_{3}} \frac{2 \mathrm{~mol} \mathrm{HCl}}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{\mathrm{L}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{6.00 \mathrm{~mol} \mathrm{HCl}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL}
$$

