$$
A+B^{7} \longrightarrow A C+B
$$

One element, usually a metal, replaces another element in a compound. This forms a new compound and leaves behind a new free element!

... but just because you combine an element and a compound doesn't mean that a reaction will occur. Some combinations react, some don't!

- Whether a reaction occurs depends on how easily the replacing and replaced elements lose electrons. An atom that loses electrons more easily will end up in IONIC form (in other words, in the compound). An atom that loses electrons less easily will end up as a free element.
- We say that an atom that loses elecrons more easily that another is MORE ACTIVE than the other element. But how would you get information about ACTIVITY?

A single replacement reaction is an example of a reaction where ELECTRON TRANSFER is a driving force. Electron transfer reactions are generally called OXIDATION-REDUCTION reactions.

ACTIVITY SERIES

- comes from experiental data. It's a list of elements in order of their ACTIVITY - more active elements are higher in the series!

PREDICTING SINGLE REPLACEMENT REACTIONS

$$
\mathrm{Pb}(\mathrm{~s})+2 \mathrm{H}\left(1 l_{\mathrm{aq}}\right) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

 expect lead to replace hydrogen in this reaction.

Zinc is MORE ACTIVE than lead, so we would expect zinc to replace lead in this reaction.

$$
\mathrm{Ag}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{ay}) \rightarrow \text { NO REACTION }
$$

Silver is LESS ACTIVE than hydrogen, so we would NOT expect it to be able to replace hydrogen in a single replacement reaction.

$$
\mathrm{Mg}_{\mathrm{g}}(\mathrm{~s})+\mathrm{Zn}_{\lambda} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s})
$$

Since magnesium is MORE ACTIVE than zinc, we would expect magnesium to replace zinc in this reaction.

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

Chemical equations are written and balanced in terms of ATOMS and MOLECULES

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

$$
\AA_{-\mathrm{Na}_{2} \mathrm{CO}_{3} \text { solid }} \mathrm{L}_{\mathrm{HCl}} \text { solution }
$$

... so how do we relate atoms and molecules with things we routinely measure in lab - like grams and milliliters?

THE MOLE CONCEPT

- A "mole" of atoms is $\frac{6.022 \times 10^{23} \text { atums }}{\text { Why so big? Because atoms are so small!! }}$
- Why - in the metric dominated world of science - do we use such a strange number for quantity of atoms?

carbon-12

THE MOLE CONCEPT

- Why define the mole based on an experimentally-measured number?
- The atomic weight of an element (if you put the number in front of the unit GRAMS) is equal to the mass of ONE MOLE of atoms of that element!

the mass of ONE MOLE of naturally-occurring carbon atoms

Magnesium (Mg): $24.31 \mathrm{~g}=$ the mass of ONE MOLE OF MAGNESIUM ATOMS

- So, using the MOLE, we can directly relate a mass and a certain number of atoms!

RELATING MASS AND MOLES

- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")
- Need CONVERSION FACTORS - where do they come from?
- We use ATOMIC WEIGHT as a conversion factor.

$$
M_{g}=24.31 \mid 24,31 \mathrm{~g} \mathrm{mg}_{\mathrm{g}}=1{\underset{\text { mol }}{ } \mathrm{mol}^{\mathrm{mol} \text { the }}}^{\mathrm{mg}}
$$ abbreviation for "mole"

Example: How many moles of atoms are there in 250. g of magnesium metal?

$$
\begin{aligned}
24.31 \mathrm{gmg} & =\text { mol } \mathrm{Mg} \\
250 . \mathrm{ghtg} \times \frac{\mathrm{mol} \mathrm{mg}}{24.31 \mathrm{gmg}} & =10.3 \mathrm{~mol} \mathrm{Mg}
\end{aligned}
$$

Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

Use the atomic weight of iron ($55.85 \mathrm{~g} / \mathrm{mol}$) as a conversion factor relating mass and moles.

$$
\begin{gathered}
55.85 \mathrm{gFe}=\mathrm{mol} \mathrm{Fe} \\
1.75 \text { mot } \mathrm{Fe} \times \frac{55.85 \mathrm{gFe}}{\text { mol } \mathrm{Fe}}=97.7 \mathrm{~g} \mathrm{Fe}
\end{gathered}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
& \begin{array}{l}
\left(\mathrm{H}_{2} \mathrm{O}\right) \\
\mathrm{H}_{2} \mathrm{O} \quad \begin{array}{l}
\mathrm{H}: 2 \times 1.008=2.016 \\
\mathrm{O}: \frac{1}{2} \times 16.00=16.00 \\
18.016 \mathrm{~g} \mathrm{H} \mathrm{O}
\end{array} \\
\\
\text { mol } \mathrm{H}_{2} \mathrm{O}
\end{array}
\end{aligned}
$$

$$
25 . \mathrm{O} \mathrm{~g}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{gH} \mathrm{O}}=1.39 \mathrm{~mol} \mathrm{H} \mathrm{O}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it;s called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

$$
\begin{array}{l|l}
\mathrm{NH}_{4}{ }^{+} \mathrm{CO}_{3}^{2-} & \mathrm{N:2} \mathrm{\times 14.01} \\
\mathrm{NH}_{4}{ }^{+} & \begin{array}{l}
\mathrm{H}: 8 \times 1.008 \\
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
\end{array} \\
\mathrm{C}: 1 \times 12.01 \\
0: \frac{3 \times 16.00}{96.094<- \text { Formula weight of ammonium carbonate }}
\end{array}
$$

Use the formula weight as a conversion factor

$$
\begin{aligned}
& 96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{mol}_{\mathrm{ol}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \\
& 3.65 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{\mathrm{~mol}^{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=3 \mathrm{Slg}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{O}_{3}\right.}
\end{aligned}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\mathrm{NH}_{4}{ }^{+} \mathrm{NO}_{3}^{-}
$$

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{NO}_{3}: \quad \mathrm{N}: 2 \times 14.01 & =28.02 \\
H: 4 \times 1.008 & =4.032 \\
O: 3 \times 16.00 & =\frac{48.00}{80.052} \mathrm{~g} \mathrm{NH}
\end{aligned}
$$

$$
\begin{aligned}
& \% \mathrm{~N}: \frac{28.02 \mathrm{gN}}{80.052 \mathrm{~g} t \cdot t} \times 100 \%=35.0 \% \mathrm{~N} \\
& \% \mathrm{H}: \frac{4.032 \mathrm{gH}}{80.052 \mathrm{~g} t \cdot t} \times 100 \%=6 \\
& \% .0 \% \mathrm{H} \\
& \% \mathrm{~S}: \frac{48.00 \mathrm{gO}}{80.052 \mathrm{~g} \text { tot }} \times 100 \%=60.0 \% \mathrm{O}
\end{aligned}
$$

These percentages should sum to 100%, but you may have a little roundoff error.

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?
Sec - What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
p457-- How do we deal with finding the moles of a desired chemical when it's in

462 solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{aligned}
M & =\text { MOLARITY }
\end{aligned} \begin{aligned}
& \frac{\text { mules of solute }}{L \text { solution }} \\
6.0 \mathrm{M} \mathrm{HCl} \text { solution: } & \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{aligned}
$$

There are 6.0 moles of hydrochloric acid in each liter of this solution, so you can write this relationship another way:

$$
6.0 \mathrm{~mol} \mathrm{HCl}=1 \mathrm{~L}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
\begin{aligned}
& 6.0 \mathrm{molHCl}=L \\
& 0.250 \mathrm{~L} \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

If you need 0.657 moles of hydrochloric acid, how many milliliters of 0.0555 M HCl do you need to measure out?

$$
\begin{gathered}
0.0 S S S_{\text {mol }} H C 1=L \quad m L=10^{-3} L \\
0.657 \text { mol } H C \left\lvert\, \times \frac{L}{0.0 S S S \text { mod } H C 1} \times \frac{m L}{10^{-3} L}=11800 \mathrm{~mL}\right.
\end{gathered}
$$

This is a volume that's not practical in a lab setting. Maybe we should use a more concentrated solution?

What if we used 6.00 M HCl ?

$$
\begin{aligned}
& 6.00 \mathrm{~mol} H C I=L \quad m L=10^{-3} L \\
& 0.657 \mathrm{moyHCl} \times \frac{K}{6.00 \mathrm{molHCl}} \times \frac{m L}{10^{-3} L}=\frac{110 . m L}{\begin{array}{c}
\text { This is a more reasonable } \\
\text { volume to measure in a } \\
\text { laboratory. }
\end{array}}
\end{aligned}
$$

If you're preparing a solution by dissolving a solid in water, you can easily calculate the molarity of the solution. How?

Just find the number of moles of solid you dissolved, then divide by the volume of the solution (expressed in liters!)

What is the molarity of a solution made by dissolving 3.50 g of NaCl in enough water to make 250. mL of solution?

$$
M=\frac{\text { mol } \mathrm{NaCl}_{a}}{L \text { solution }}
$$

Find moles NaCl by using the formula weight

$$
\begin{aligned}
& \mathrm{Na}_{\mathrm{a}}: 1 \times 22.99 \\
& C_{1}: \frac{1 \times 35.45}{58.44 \mathrm{~g} \mathrm{aCl}}=\mathrm{mol} \mathrm{NaCl}
\end{aligned}
$$

$$
\text { 3.50g } \mathrm{NaCl} \times \frac{\mathrm{mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}=0.059890 \mathrm{~mol} \mathrm{NaCl}
$$

Find volume of solution

$$
\begin{aligned}
& \text { ne of solution } m L=10^{-3 L} \\
& 280 m L \times \frac{10^{-3 L}}{m L}=0.280 L
\end{aligned}
$$

$$
\begin{aligned}
M & =\frac{0.059840 \mathrm{~mol} \mathrm{NaCl}}{0.280 \mathrm{~L}} \\
& =0,240 \mathrm{MNaCl}
\end{aligned}
$$

A few more examples...Use FORMULA WEIGHT when relating mass and moles You have a $250 . g^{k}$ bottle of silver (l) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
& \text { AgC: Ag: } 1 \times 107.4 \\
& C 1: \frac{1 \times 35.45}{143.35} \mathrm{AgCl}=\operatorname{mol} \mathrm{AgCl} \\
& \text { 250.g } \mathrm{AgCl} \times \frac{\text { mol } \mathrm{AgCl}}{143.3 \mathrm{Sg}_{\mathrm{g} g \mathrm{Cl}}}=1.74 \mathrm{~mol} \mathrm{AgCl}^{\mathrm{Ag}}
\end{aligned}
$$

How many moles of NaOH are present in 155 mL of 1.50 M NaOH ?
When relating moles and VOLUME, we need to use CONCENTRATION

$$
\begin{aligned}
& 1.50 \mathrm{~mol} \mathrm{NaOH}=L^{(\text {Usually MOLARITY }-\mathrm{M})} \quad \mathrm{mL}=1 \mathrm{O}^{-3} L \\
& \text { IS } \mathrm{sm} \not \mathrm{~L} \times \frac{1 \mathrm{O}^{-3} \mathrm{~m} K}{\mathrm{~m}} \times \frac{1.50 \mathrm{~mol} \mathrm{NaOH}}{K}=0.233 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

End of material for test 3
Summer 2009
Test date 7/21/09

