DOUBLE REPLACEMENTS THAT FORM GASES

(1) Formation of hydrogen sulfide: H2S

- need an ACID (source of hydrogen ion) and a SULFIDE

$$H_2SO_4[aq] + Na_2S[aq] \rightarrow Na_2SO_4[aq] + H_2S(g)$$
 $H^+SO_4^2 - Na_4^+SO_4^2 - Na_4^+SO_4^4 -$

(2) Formation of carbonic acid and carbon dioxide:

$$H_2(O_3(aq) \longrightarrow H_2O(l) + (O_2(q))$$

- to form carbonic acid by double replacement, you need a source of hydrogen ion (ACID) and a source of carbonate (can be CARBONATE or BICARBONATE)

Example of a reactions that forms carbonic acid, then gas: The "baking soda volcano"!

VINEGAR

2H(
$$_2$$
H $_3$ O $_2$ ($_{\alpha}$ q) + $N_{\alpha 2}$ ($_{O_3}$ ($_{\alpha}$ q) \longrightarrow 2Na($_2$ H $_3$ O $_2$ ($_{\alpha}$ q) + $N_{\alpha 2}$ ($_{O_3}$)

H+ ($_2$ H $_3$ O $_2$

Na⁺ ($_2$ H $_3$ O $_2$

Na($_2$ H $_3$ O $_2$

Ma($_2$ H $_3$ O $_2$

Ma($_2$ H $_3$ O $_3$

Ma($_3$) + $_3$ Ma($_3$) + $_3$ Ma($_3$ M $_3$

Ma($_3$) + $_3$ Ma($_3$ M $_3$

Ma($_3$) + $_3$ Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

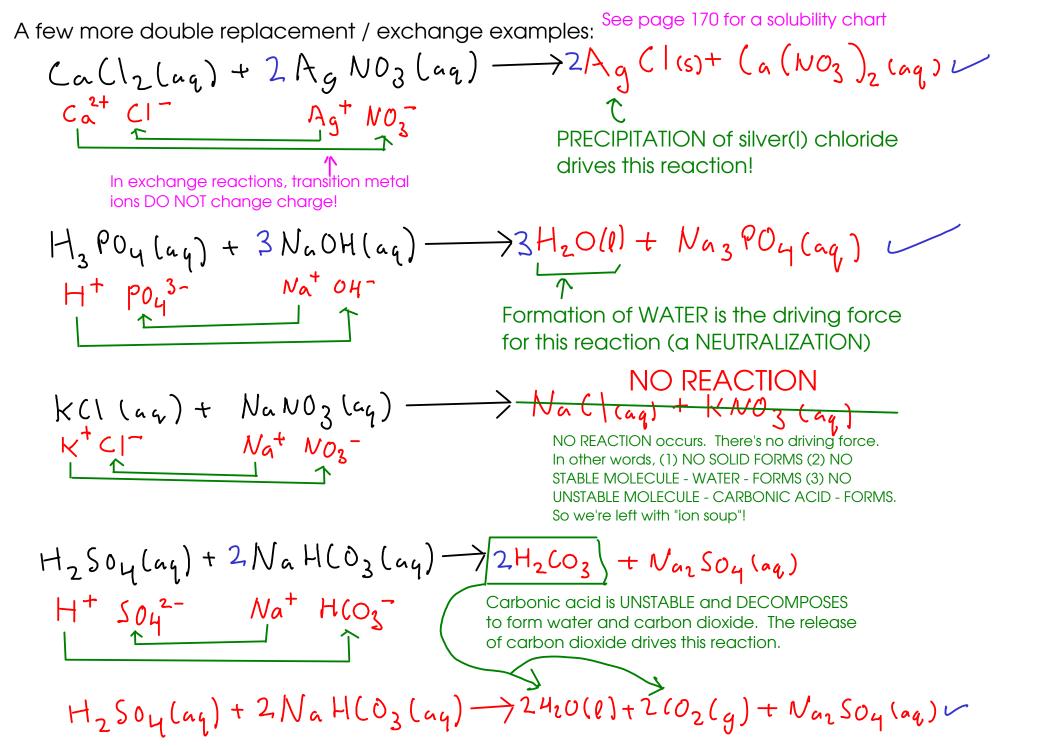
Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$


Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma($_3$ M $_3$

Ma(

This is the overall process. We show carbon dioxide and water as products, since we want to show the reaction as it's actually observed -with carbonic acid broken down to water and (gaseous) carbon dioxide.

Fe
$$(No_3)_3$$
 $(a_9) + 3NaOH$ $(a_9) \rightarrow 3NaNO_3(a_9) + Fe $(OH)_3$ (s)

Fe³⁺ NO_3 $NO_3$$

"slightly soluble") iron(III) hydroxide drives this reaction. This is a PRECIPITATION!

$$2H(|(aq) + Pb(ND_3)_2(aq) \rightarrow 2HNU_3(aq) + Pb(|(aq) + P$$