propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{H}=-2043 \mathrm{~kJ}
$$

Calculate the volume of propane gas at 25.0 C and 1.08 atm required to provide 565 kJ of heat using the reaction above.
1 - Convert the energy to moles propane using the thermochemical equation.
2 - Convert moles propane to volume using the ideal gas law.

$$
\begin{align*}
& -2043 \mathrm{~kJ}=\mathrm{mol}_{3} \mathrm{H}_{8} \\
& -565 \mathrm{~kJ} \times \frac{\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{8}}{-2043 \mathrm{~kJ}}=0.27655 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& V=\frac{n R T}{p} \left\lvert\, \begin{array}{l}
n=0.2765 S_{\mathrm{mol}} \mathrm{C}_{3} \mathrm{H}_{8} \quad R=0.08206 \frac{\mathrm{hatm}}{\mathrm{mul} \cdot \mathrm{~h}^{\prime}} \\
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~h} \quad P=1.08 \mathrm{~atm} \\
V=? ?
\end{array}\right. \\
& V=\frac{\left(0.27655 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}\right)\left(0.08206 \frac{\mathrm{hatm}}{\mathrm{mul} \cdot \mathrm{~h}^{\prime}}\right)(298.2 \mathrm{~h})}{(1.08 \mathrm{~atm})} \\
&=6.27 \mathrm{~L} \text { propane required }
\end{aligned}
$$

