2500 L of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert volume chlorine gas to moles (Use the ideal gas law)
2 - Convert moles chlorine to moles HCl using chemical equation
3 - Convert moles HCl to kg HCl using formula weight (and definition of "kilo-")

$$
\begin{aligned}
& P V=\underline{n} R T \mid P=1.00 \text { atm } \quad R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{hs}} \\
& \frac{P V}{R T}=n \quad \begin{array}{l}
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \quad n=? ? ? \\
V=2500 \mathrm{~L}
\end{array} \quad \begin{array}{l}
\mathrm{V}=2 \mathrm{l},
\end{array} \\
& \text { (1) } n_{\mathrm{Cl}_{2}}=\frac{(1.00 \mathrm{~atm})(25 \overline{O O L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~K})}=102.1647 \mathrm{~mol} \mathrm{Cl} 2 \\
& \mathrm{~mol} \mathrm{Cl} 2=2 \mathrm{~mol} \mathrm{HCl}|36.458 \mathrm{gHCl}=\mathrm{mol} \mathrm{HCl}| \mathrm{Kg}=10^{3} \mathrm{~g} \\
& 102.1647 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Cl}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\mathrm{mul} \mathrm{HCl}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=7.4 \mathrm{~S} \mathrm{hg} \mathrm{HCl}
\end{aligned}
$$

Calculate the mass of $2265^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

*Volume of a $10^{\prime} \times 10^{\prime} \times 8^{\prime}$
1 - Convert the volume of gas to moles using the ideal gas law room
2 - Convert the moles gas to mass using the formula weight (of oxygen gas)

$$
\begin{aligned}
& \begin{array}{l|l|l}
P V=n \beta T & P=1.18 \mathrm{~atm} & R \geq 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~h}} \\
P V & V=22650 \mathrm{~L} &
\end{array} \\
& \frac{R}{R T}=n \\
& T=250^{\circ} \mathrm{C}=298.2 \mathrm{~h} \quad n=? ? \\
& \text { (1) } n=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~m}}\right)(298.2 \mathrm{~h})}=1092.222 \mathrm{~mol} \mathrm{O} 2 \\
& 32.00 \mathrm{~g} \mathrm{O}_{2}=\mathrm{molo} \mathrm{O}_{2} \\
& 21092.222 \mathrm{~mol} \mathrm{O} 2 \times \frac{32 . \mathrm{og} \mathrm{O}_{2}}{\mathrm{molo}_{2}}=3 \mathrm{STOOgO}_{2} \\
& 35,0 \mathrm{~kg} \\
& \begin{array}{l}
\downarrow \\
フ 16
\end{array}
\end{aligned}
$$

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?
We need to find: \underline{M} of $\mathrm{HCl}=\frac{\text { moles } \mathrm{HCl}}{L \text { solution }}=0,04890 \mathrm{~L}$
We know volume of the acid, so we need to find moles HCl !
1 - Convert volume of carbon dioxide gas to moles using ideal gas law
2 - Convert moles carbon dioxide to moles HCl using chemical equation $2 \mathrm{~mol} \mathrm{HCJ}=\mathrm{mol} \mathrm{CO}_{2}$

$$
n=\frac{P V}{R T} \left\lvert\, \begin{array}{ll}
P=0.950 \mathrm{arm} \\
V=125.0 \mathrm{~mL}=0.1250 \mathrm{~L} \\
T=290.2 \mathrm{~W}
\end{array} \quad R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~h}}\right.
$$

(1) $n_{\mathrm{CO}_{2}}=\frac{(0.950 \mathrm{arm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(290.2 \mathrm{~K})}=0.0049866 \mathrm{~mol} \mathrm{CO} 2$
(2) $0,0049866 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{molCO}}=0.0099732 \mathrm{~mol} \mathrm{HCl}$

$$
M=\frac{\text { mules } \mathrm{HCl}}{L \text { solution }}=\frac{0.0099732 \mathrm{~mol} \mathrm{HCl}}{0.04890 \mathrm{~L}}=0.204 \mathrm{M} \mathrm{HCl}
$$

ENERGY

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
\uparrow motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} \underset{v^{2}}{v^{2}}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"

\uparrowrelated to the kinetic and potential energy of atoms, molecules, and their component parts.

- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)

Q:heat
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SUROUNDINGS	-	increases

ENERGY UNITS

- calorie (cal): the amount of energy required to change the temperature of one gram of water by one degree Celsius (or Kelvin)

- Calories in food? The "Calorie" that is given on American food labels is actually the kilocalorie (kcal)
- Joule (J): SI unit for energy. It's defined based on the equation for kinetic energy.

- the Joule is a small unit. For most reactions at lab scale, we'll use kilojoules (kJ).

