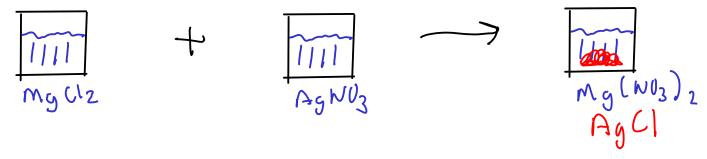
### CHEMICAL EQUATIONS

- are the "recipes" in chemistry
- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$\text{MgCl}_{2}(aq) + 2 \text{AgNO}_{3}(aq) \xrightarrow{\text{"yields"}} 2 \text{Ag(l(s)} + \text{Mg(NO}_{3})_{2}(aq)$$

REACTANTS - materials that are needed for a reaction


PRODUCTS - materials that are formed in a reaction

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others

PHASE LABELS - give the physical state of a substance:

- (s) -solid
- (I) liquid
- (g) gas

(aq) - aqueous. In other words, dissolved in water



#### CHEMICAL EQUATIONS

$$2 \text{ Mg(s)} + O_2(g) \xrightarrow{\Delta} 2 \text{ MgO(s)}$$

REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be:

- $\triangle$  apply heat
- catalysts substances that will help reaction proceed faster
- other conditions, such as required temperatures
- Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions

# COEFFICIENTS

- Experimentally, we can usually determine the reactants and products of a reaction
- We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process called BALANCING
- BALANCING a chemical equation is making sure the same number of atoms of each element go into a reaction as come out of it.
- A properly balanced chemical equation has the smallest whole number ratio of reactants and products.
- There are several ways to do this, but we will use a modified trial-and-error procedure.

### BALANCING

$$C_3H_6 + 50_2 \rightarrow 3CO_2 + 4H_2O$$

$$\frac{6}{4}$$

- Pick an element. Avoid (if possible) elements that appear in more than one substance on each side of the equation.
- Change the coefficients on substances containing this element so that the same number of atoms of the element are present on each side. CHANGE AS LITTLE AS POSSIBLE!
- Repeat 1-2 until all elements are done.
- Go back and quickly <u>VERIFY</u> that you have the same number of atoms of each element on each side, If you used any fractional coefficients, multiply each coefficient by the DENOMIMATOR of your fraction.

**Use SMALLEST WHOLE NUMBER RATIOS!** 

3 My Cl<sub>2</sub> + 2 Na<sub>3</sub>PO<sub>4</sub> 
$$\longrightarrow$$
 My<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 6 NaCl  $\longrightarrow$  3my GNa 80 GCl 2P GCl 2P  $\longrightarrow$  2 CO<sub>2</sub> + H<sub>2</sub>O  $\longrightarrow$  4

- To get a single oxygen atom from O2, we need HALF of an O2 molecule. To get FIVE oxygen atoms, we need 5/2 O2 molecules.
- To get rid of the fraction, multiply ALL the coefficients by the denoiminator of the fraction.

$$2C_{1}H_{1} + 50_{2} \longrightarrow 4C_{0} + 2H_{2}O$$

$$H_2SO_H + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O V$$

4H

60

# **IDENTIFYING REACTIONS**

You may see one or more of these signs when a chemical reaction occurs

- 1 A change in temperature that can't be explained in another way.
- 2 Emission of light that can't be explained in another way
- 3 The <u>formation of a solid</u> or PRECIPITATION in a previously liquid solution. (Not a simple phase change!) or gas furnation.
- (4)- Color change (not simply lightening of color caused by diluting a solution!)

- It's simpler to talk about different reactions if we can classify them into a small number of classes.

# **COMBINATION REACTIONS**

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2AlBr_3(s)$$

# 1 DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_{2}O_{2}(\ell) \longrightarrow 2 H_{2}O(\ell) + O_{2}(g)$$

- \* This reaction is NOT a combustion reaction, even though O<sub>2</sub> is involved!
- \* Combustion reactions CONSUME O<sub>2</sub>, while this reaction PRODUCES O<sub>2</sub>

# (3)

# COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (  $O_2$  ) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:  $AB + O_{\overline{A}} \rightarrow AO + BO$ 

Oxide: a compound containing OXYGEN and one other element!

\* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Oxides!

Examples:

+ C<sub>3</sub>H<sub>8</sub>(y)+5O<sub>2</sub>(y)  $\longrightarrow$  4H<sub>2</sub>U(g)+3CO<sub>2</sub>(g)

 $2mg(s) + O_2(g) \longrightarrow 2mgO(s)$ 

This reaction can also be called a combination! Two reactants form a single product.

# (4)

# SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (more on that later!)

- Form: A + BC -> AC + B "A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.



# DOUBLE REPLACEMENT REACTIONS

- Also called "exchange" reactions
- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

- Form: AB + CD 
$$\longrightarrow$$
 AD + CB "A" and "C" are CATIONS "B" and "D" are ANIONS

- Can be predicted based on the characteristics of the potential products (More on that later!)
- Occur in AQUEOUS SOLUTION

Examples:

$$3 \text{ Mg}(1_2(\text{nq}) + 2 \text{ Na}_3 \text{ PO}_4(\text{nq}) \longrightarrow \text{Mg}(\text{PO}_4)_2(\text{s}) + 6 \text{ Na}(\text{l(nq)})$$

Ag NO3 (aq) + NaCl(aq)  $\longrightarrow$  Ag Cl(s) + NaNO3 (aq)

# DOUBLE REPLACEMENT (EXCHANGE) REACTIONS

... but HOW do they switch partners?

- (1) Exchange reactions almost always take place in AQUEOUS SOLUTION
- (1) In aqueous solution, IONIC THEORY applies!