Calorimetry experiment

50 mL 2 MHCl
50 mL 2 m NaOH
100 mL total volume

$$
\mathrm{HC} \mid(a q)+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)
$$

We wish to find the enthalpy change per mole of hydrochloric acid for the reaction above.

We define the system as the reactants and products, and the surroundings as the water in the original two solutions and the cups containing the reaction.

We mix the solutions together and monitor the temperature of the liquid in the cup. Heat loss actually begins the moment the temperature rises higher than room temperature, so we monitor the cup over a period of time to see what the rate of heat loss is. We can use this information to correct our data for heat loss if necessary.

The classroom was quite warm, and we saw a $T_{f} \frac{28^{K^{\text {stow rate }}} 8^{\text {the }}}{}$
$\Delta T=T_{F}-T_{i}=4.2{ }^{\circ} \mathrm{C}$
$Q_{\text {cup }}=10 . \mathrm{J} / \mathrm{c}_{\mathrm{c}} \times 4.2{ }^{\circ} \mathrm{C}=42 \mathrm{~J}$

$$
Q_{\text {water }}=4.184 \mathrm{~J} / \mathrm{y}^{\circ} \mathrm{C} \times 100 . g \times 4.2^{\circ} \mathrm{C}=
$$

$$
=\frac{1757.28}{Q_{w}} \mathrm{~J}
$$

$$
\begin{aligned}
Q_{r \times n} & =-\left(\frac{17 \delta 7.28 \mathrm{~J}}{Q_{\omega}}+\frac{Q^{\cos }}{} \mathrm{J}\right) \\
& =-1794.28 \mathrm{~J}
\end{aligned}
$$

Now, we need to find the enthalpy change per mole of hydrochloric acid

Enthalpy change is equal to heat change at constant pressure, and this was a constant pressure experiment.

$$
\begin{aligned}
& \Delta H=\frac{Q r x n}{m o t h C l} \\
& \begin{array}{l}
\text { mol } \mathrm{HCl} \\
\text { 个 } \\
\\
\hline 10.0500 \mathrm{~L} \times 2 \frac{\mathrm{~mol}}{\mathrm{~L}}=0.100 \mathrm{~mol} \mathrm{HCl}
\end{array} \\
& \Delta H=\frac{-1794.28 \mathrm{~J}}{0.100 \mathrm{~mol}}=\frac{-17092.8}{\mathrm{~J} / \mathrm{mol}}=\frac{-18 \mathrm{~mol}}{\mathrm{~mol}}
\end{aligned}
$$

So the enthalpy change per mole HCl was determined to be $-18 \mathrm{~kJ} / \mathrm{mol}$.
This is a good deal lower than the accepted value for the enthalpy change for this reaction. Some possible sources of error:

* The HCl used in the classroom experiment was from an old stock bottle, and it's possible that some HCl gas escaped over time, making the HCl concentration less than 2.0 M .
* The NaOH used also came from an old stock bottle. If this bottle had been open to the air for a long period of time during previous experiments, carbon dioxide from the air could have reacted with the sodium hydroxide, lowering its concentration.

