Some basic definitions:

Chemistry: SYSTEMATIC STUDY OF MATTER AND THE CHANGES IT UNDERGOES

... so what about "SYSTEMATIC STUDY"?

Systematic study? The scientific method

You flip the light switch in your den, but nothing happens. What is wrong?
observation lexperiment. Flip light switch, no light!
hypothesis: Explanation: Butb is burnedout.
predıctıú: - Chenging the bulb sheuld bring back the light.
$\underline{e x p e r i m e n t}$ Result of changing the bulb: Still no light.

Measurements

Measurements are comparisons of properties against accepted standards, called units.

English/VS units:

1 foot $=12$ inches 1 yard $=3$ feet $\quad 1$ mile $=1760$ yurds

$$
\text { S280ft }=2 \text { mile }
$$

So what's the problem? English units are not consistent. This makes the English system hard to learn and use. The relationships between units in the English system must all be memorized separately.

English units are nonstandard and difficult to use. Solution?

THE METRIC SYSTEM

Metric Base Units:

Metric units may be made larger or smaller by adding PREFIXES.

Metric Prefixes:

mega-	10^{6}	M
kilo-	10^{3}	k
centi-	10^{-2}	c
milli-	10^{-3}	m
micro-	10^{-6}	μ

Bigger units

Applying prefixes

$$
\begin{aligned}
& \Lambda K m=10^{3} \mathrm{~m}=\sum^{m}(1000 \mathrm{~m}) 10 \times 10 \times 10 \\
& \Lambda c m=10^{-2} m\left(\frac{1}{100} m\right) \frac{1}{10} \times \frac{1}{10}
\end{aligned}
$$

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
\begin{aligned}
& K=10^{3}, K \mathrm{~m}=10^{3} \mathrm{~m} \quad(1000 \mathrm{~m}) \\
& 107 \mathrm{Km}
\end{aligned}
$$

A piece of chalk is 0.080 meters long. What metric unit would be best suited for this length?

$$
\begin{aligned}
& C=10^{-2} \quad \mathrm{~cm}=10^{-2} \mathrm{~m}\left(\frac{1}{100} \mathrm{~cm}\right) \\
& 8.0 \mathrm{~cm}
\end{aligned}
$$

Derived Units

- are units that are made up of combinations of metric base units with each other and/or with prefixes

$$
\text { Example: Speed } \frac{\text { miles }}{h r} \text {, } \frac{K m}{h r}\left(\frac{\text { length }}{\text { time }}\right) \frac{m}{s}
$$

Two derived units are particularly important in introductory chemistry:

1) VOLUME
2) DENSITY

VOLUME

VOLUME $=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

What are the units of volume in the metric system?
$L=$ LENGTH. Metric base unit of length is the meter (m)
L
$W=$ WIDTH; also in meters
$H=$ HEIGHT; also in meters

$$
\text { VOLUmE }=\underset{L}{(m)} \times \underset{\omega}{(m)} \times \underset{H}{(m)}=m^{3} \quad \begin{aligned}
& \text { "CUBIC } \\
& \text { METERS" }
\end{aligned}
$$

... but the cubic meter is a large unit. Too large for typical lab and medical work! (Picture a cube that is a meter - a little longer than a yard - on each side.)

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit for volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use milliliters (mL)

" "cc"
cubic centimeter
=
milliliter

$$
\begin{aligned}
& 1 m L=10^{-3 L} \\
& 1000 \mathrm{~mL}=1 \mathrm{~L}=1
\end{aligned}
$$

