Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250 mL of solution.

$$
\begin{aligned}
& N: 2 \times 14.01 \\
& H: 4 \times 1.008 \\
& 0: \frac{3 \times 16.00}{80.052} \quad \mathrm{NH}_{4} \mathrm{NO}_{z}=1 \mathrm{mul} \mathrm{NH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-} \\
& \checkmark \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{XNO}
\end{aligned}
$$

Since ammonia is a weak base, its conugate (ammonium) is a weak acid!
Nitric acid is a STRONG acid, so it doesn't exist as the molecule in water. Nitrate ion, therefore, cant act as a base.

$$
\begin{aligned}
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{Ka}_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=? \left\lvert\, \begin{array}{l}
\left(\mathrm{Ka}, \mathrm{NH}_{4}^{+}\right) \\
\ldots \text { conjugate pairs! } \\
\mathrm{K}_{a}=5.56 \times 10^{-10}
\end{array}\right.
\end{aligned}
$$

We need to calculate the initial concentration of the ammonium ion!

$$
\begin{aligned}
& 3.00 \mathrm{~g} / \mathrm{VH}_{4} \mathrm{NO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.052 \mathrm{~g} \mathrm{NH} \mathrm{NO}_{3}} \times \frac{0.250 \mathrm{~L}}{80.1499 \underline{\mathrm{~N}}}=0.12=\frac{\mathrm{mol}}{\mathrm{~L}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}}{0.1499-x}=5.56 \times 10^{-10} \\
& \downarrow x \ll 0.1499 \\
& \frac{x^{2}}{0.1499}=5.56 \times 10^{-10} \rightarrow x=9.13 \times 10^{-6}=\left[H_{3} 0^{+}\right] \\
& p H=5.04
\end{aligned}
$$

BUFFERS

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1) Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak NH_{3} ase and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\mathrm{HA}_{\mathrm{A}} \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

- Add HA (weak acid)
- Add a salt containing A" (example: NaA)
- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{gathered}
H A+H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+A^{-} \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

(1) Take log of both sides
(2) Multiply by -1
(3) Rearrange, solving for pH

$$
\begin{aligned}
p H & =p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \quad \begin{array}{l}
\text { Henderson- } \\
\text { Hasselbalch } \\
\text { Equation }
\end{array}\right. \\
& {[A-] \ldots \text { from the salt } } \\
& {[H A] \ldots \text { from the weak acid } }
\end{aligned}
$$

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

$$
\begin{aligned}
& p H=p K_{a_{\text {acidic }}}+\log \left(\frac{[\text { basic species }]}{\text { [acidic species] }])} \begin{array}{l}
\text { Henderson- } \\
\text { Hasselbalch } \\
\text { Equation }
\end{array}\right. \\
& \text { ex: acidic buffer } \\
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& p H=p K_{a} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{5} \mathrm{O}_{2}\right]}\right) \\
& \frac{\text { ex: basic buffer }}{\mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3}} \\
& \mathrm{PH}=\mathrm{PKa}_{\mathrm{NH}_{4}^{+}}+\log \left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
& p W_{a}+p K_{b}=14,00 \ldots \text { is the -log of } K_{a} \times K_{b}=K_{w}
\end{aligned}
$$

Calculate the pH of a buffer made from 3.2 grams of ammonium chloride and 29 mL of 18.1 M ammonia diluted to 50.0 mL with water.

$$
\begin{gathered}
\left.p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species. }]}{[\text { acidic species }]}\right) \right\rvert\, \\
{\left[\mathrm{NH}_{3}\right]=? \text { Dilution! } \quad M_{1} V_{1}=M_{2} \mathrm{~V}_{2}} \\
(18.1 \mathrm{M})(29 \mathrm{~mL})=M_{2}(50.0 \mathrm{~mL}) \\
M_{2}=\left[\mathrm{NH}_{3}\right]=10.498 \mathrm{M}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\mathrm{NH}_{4}+\right]=? \quad \mathrm{NH}_{4} \mathrm{Cl}: 53.492 \mathrm{glmol}} \\
& \quad 3.00 \mathrm{~g} \mathrm{H}_{4} \mathrm{Cl} \times \frac{\mathrm{mol} \mathrm{NH}}{53.492 \mathrm{~g} \mathrm{H}} 44 \mathrm{Cl}
\end{aligned} \frac{0.0500 \mathrm{~L}}{53.42 \mathrm{M}}=1.12
$$

$$
\text { phra, } N H_{4}^{+}=-\log \left(5.56 \times 10^{-10}\right)=9.25 K<\text { from a previous problem }
$$

$$
p H=9.25+\frac{\log \left(\frac{10.498}{1.12}\right)^{\prime}}{0.97}=
$$

