$0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$... Find the pH of the solution

$$
\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

Acidic, basic, or neutral salt?
This is the WEAK BASE ammonia. Stable \longleftarrow in water.

$$
\begin{aligned}
& \mathrm{NH}_{4}{ }^{+}: \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{Cl}^{-}: \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \overline{\mathrm{HCl}}+\mathrm{OH}^{-X}
\end{aligned}
$$

This sa strong ACID, which apes nor exist as a stable molecule in water. The conjugate of a strong acid or base is NEUTRAL - does not affect pH!

$$
\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \text {This equilibrium affects the } \mathrm{pH} \text {, so it is the }
$$

$$
\begin{aligned}
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \text { Where do we get this Ka? } \\
& \mathrm{Ka}_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{2}{\substack{ \\
\hline 10^{-10}}} \begin{array}{l}
K_{6, N H}=1,5 \times 10^{-5} \\
h_{a} \times h_{b}=1.0 \times 10^{-14}
\end{array}
\end{aligned}
$$

	Initial	Δ	equilibrium
$\left[\mathrm{NH}_{3}\right]$	0	$+X$	X
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	0	$+X$	X
$\left[\mathrm{NH}_{4}{ }^{+}\right]$	0,100	$-X$	$0,100-x$

We defined " x " as the concentration of hydronium ion made by the equilibrium!

$$
\begin{aligned}
& x=7,46 \times 10^{-6}=\left[H_{3} O^{+}\right] \\
& p H=-\log _{10}\left(7,46 \times 10^{-6}\right)=\frac{S .13=p H}{\text { Compare: }}
\end{aligned}
$$

$\mathrm{pH}=1.00$ for 0.100 M strong acid
$\mathrm{pH}=2.16$ for 0.100 M nitrous acid
$\mathrm{pH}=7.00$ for pure distilled water

$$
\begin{aligned}
& 0.100 \mathrm{M} \mathrm{NaC} \mathrm{~N}_{3} \mathrm{O}_{2} \text {, Find } \mathrm{pH} \\
& \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\
& \text {conjugate of acetic acid } \\
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \text { neutral } \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& K_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=? \\
& \mathrm{Ka}_{1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.7 \times 10^{-5} ; \mathrm{Ka} \times \mathrm{K}_{b}=1.0 \times 10^{-14} \ldots \text { true for conjugate pairs } \\
& K_{b}=5,88 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]}=5.88 \times 10^{-10}
\end{aligned}
$$

	\|nitial	Δ	equilibrium
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	0	$+X$	X
$\left[\mathrm{OH}^{-}\right]$	0	$t X$	X
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right]$	0,100	$-X$	$0,100-X$

Define " x " as the concentration of hydroxide produced by the equilibrium, since that's closely related to pH

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=5.88 \times 10^{-10} \\
& \psi_{2} x \ll 0.100 \\
& \frac{x^{2}}{0,100}=5.88 \times 10^{-10} ; x=7.67 \times 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& x=7.67 \times 10^{-6}=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{POH}=\log _{10}\left(2.67 \times 10^{-6}\right) \\
& \mathrm{POH}=\mathrm{S} .12 \quad \text {...this is } \mathrm{POH} \text {, but we need } \mathrm{pH} \text {. Luckily for us, they } \\
& \mathrm{PH}+\mathrm{POH} 214.00 \\
& \text { So, } \mathrm{PH}=14,00-5,12 \\
& p H=8.88 \\
& \text { Compare: } \\
& \mathrm{pH}=13.00 \text { for } 0.100 \mathrm{M} \text { strong base } \\
& \mathrm{pH}=7.00 \text { for pure distilled water }
\end{aligned}
$$

POLYPROTIC ACIDS

Find pH of $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
\begin{aligned}
& K_{a_{1}}=6,9 \times 10^{-3} \\
& K_{a_{2}}=6,2 \times 10^{-8} \\
& K_{a_{3}}=4,8 \times 10^{-13}
\end{aligned}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exits in water mostly as undissociated phosphoric acid molecules.

Solving the equilibrium of phosphoric acid's first proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& K_{a}=6.9 \times 10^{-3}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} \\
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3}
\end{aligned}
$$

For this problem, the assumption that $x \ll 0.10$ might not be safe (Ka is fairly large for a weak acid), so we should solve the quadratic instead...

$$
\begin{aligned}
& x=0.023043 \text { or }-0.024943 \\
& {\left[\mathrm{H}_{3} \mathrm{O}+\right]=\frac{0.023043 \mathrm{~m}}{\mathrm{PH}=1.64 \quad \text { Less than 0. 10, but not }} \begin{array}{l}
\text { MUCH less! }
\end{array}}
\end{aligned}
$$

