Example problems:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{H}=-484 \mathrm{~kJ}
$$

Calculate the enthalpy change for the combustion of 1.00 kg of hydrogen gas.
1 -Convert 1.00 kg of hydrogen gas to moles (formula weight)
2-Convert moles of hydrogen gas to enthalpy (chemical equation)

$$
\begin{equation*}
2.016 \mathrm{~g} \mathrm{H}_{2}=1 \mathrm{molH}_{2} \quad 2 \mathrm{~mol} \mathrm{H}=-484 \mathrm{rJ} \quad 10^{3} \mathrm{~g}=\mathrm{tg} \tag{2}
\end{equation*}
$$

$$
1.00 \mathrm{rg} \mathrm{H}_{2} \times \frac{10^{3} \mathrm{~g}}{\mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}} \times \frac{-484 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{~Hz}}=-120000 \mathrm{~kJ}
$$

$$
\Delta H=-120000 \frac{\mathrm{~kJ}}{\mathrm{Vg}}
$$

$$
\begin{aligned}
& \mathrm{FW}: 46.026 \\
& 2 \mathrm{HCHO}(\mathrm{l})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

If 50.3 kJ of heat was released when 5.48 g of formic acid are burned at constant pressure, then what is the enthalpy change of this reaction per mole of formic acid?

$$
\begin{aligned}
& \Delta H=\frac{Q_{\text {constant-pressure }}}{\text { moles } H \mathrm{CHO}_{2}}=\frac{\kappa J}{\mathrm{mul}} \\
& Q_{\text {conshal pressure }}=-50,3 \mathrm{hrJ} \\
& 5.48 \mathrm{~g} \mathrm{HCHO} 2 \times \frac{\mathrm{mol} \mathrm{HCHO}}{2} 10.026 \mathrm{~g} \mathrm{HCHO}_{2} \quad 0.119 \mathrm{~mol} \\
& \Delta H=\frac{-50,3 \mathrm{hJJ}}{0,119 \mathrm{~mol}}=-422 \mathrm{~kJ} / \mathrm{mol} \mathrm{HCHO} 2
\end{aligned}
$$

If we were asked to write the above in the form of a THERMOCHEMICAL EQUATION instead of enthalpy per mole of formic acid, how would we write it?

$$
2 \mathrm{HCHO}(\mathrm{l})+\mathrm{O}_{2}(9) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-844 \mathrm{~kJ}
$$

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=-906 \mathrm{~kJ}
$$

What is the enthalpy change when 150 . L of nitrogen monoxide are formed by this reaction at 25.0 C and 1.50 atm pressure?

1- Use the ideal gas equation to convert 150, L of NO to moles NO.
2- Use the chemical equation to change moles NO to enthalpy

$$
\begin{aligned}
& P V=n R T \mid \quad P=1.50 \text { atm } \quad R=0.08206 \frac{\mathrm{Latm}}{\mathrm{molh}} \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=150 . L \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& h_{\text {NO }}=\frac{(1.50 \mathrm{arm})(150 . L)}{\left(0.08206 \frac{\mathrm{La} \mathrm{\cdot atm}}{\text { mol.h }}\right)(298.2 \mathrm{~K})}=9.19 \mathrm{~mol} \mathrm{NO} \\
& 4 \mathrm{~mol} \mathrm{NO}=-906 \mathrm{~kJ} \\
& \text { 9. } 19 \mathrm{~mol} \operatorname{NO} \times \frac{-906 \mathrm{krJ}}{4 \mathrm{~mol} \mathrm{NO}}=-2080 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{gathered}
-20.50 \\
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{e})+2 \mathrm{SO}_{2}(\mathrm{~g})
\end{gathered}
$$

What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted?
1 - Find the enthalpy of reaction (Hess' Law and heats of formation)
2-Convert 25.0 g of hydrogen sulfide to moles hydrogen sulfide (formula weight)
3 - Convert moles hydrogen sufide to enthalpy (chemical equation)

$$
\Delta H_{r}=\sum \Delta H_{f, \text { products }}^{0}-\sum \Delta H_{f, r e a c t a n t s}^{0}
$$

(1)

$$
\begin{gathered}
{[2(-285.8)+2(-296.8)]-[2(-20.50)+3(0)]} \\
-1165.2-(-41) \\
\Delta H=-1124.2
\end{gathered}
$$

$$
\begin{aligned}
& 34.086 \mathrm{gH}_{2} \mathrm{~S}=1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} \\
& 2 \mathrm{~mol} \mathrm{H} \mathrm{H}=-1124.2 \mathrm{~kJ} \\
& \mathrm{~g} \mathrm{H}_{2} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{34.086 \mathrm{gH}_{2} \mathrm{~S}} \times \frac{-1124.2 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{H}}=-412 \mathrm{~kJ}
\end{aligned}
$$

propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=-2043 \mathrm{~kJ}
$$

Calculate the volume of propane gas at 25.0 C and 1.08 atm required to provide 565 kJ of heat using the reaction above.

1- Convert -565 kJ of energy to moles propane (chemical equation)
2-Convert moles of propane to volume (ideal gas equation)

$$
\begin{align*}
& 1 \text { mol } C_{3} H_{8}=-2043 \mathrm{hJ} \\
& -565 \mathrm{~kJ} \times \frac{1 \mathrm{~mol}_{3} \mathrm{H}_{8}}{-2043 \mathrm{rJ}}=0.27655 \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{8} \tag{1}\\
& V=n R T \quad n=0.27655 \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{8} \quad P=1.08 \mathrm{~atm} \\
& \text { (2) }
\end{align*}
$$

$$
\begin{aligned}
& V=\frac{\left(0.27655 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}\right)\left(0.08206 \frac{\mathrm{Lacm}}{\mathrm{~mol} \cdot \mathrm{~h}}\right)(298.2 \mathrm{~h})}{(1.08 \mathrm{~atm})} \\
& =6.27 \mathrm{~L} \mathrm{C}_{3} \mathrm{H}_{8} \text { required }
\end{aligned}
$$

