PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\mathrm{NH}_{4}+\quad \mathrm{NO}_{3}^{-}
$$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3}: \quad N: 2 \times 14.01=28.02 \\
& H: 4 \times 1.008=4.032 \\
& 0: 3 \times 16.00=\frac{48.00}{80.052} \mathrm{~g} \mathrm{NH} \mathrm{HNO}_{3}=1 \mathrm{~mol}^{2} \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \% N=\frac{28,02 \mathrm{~g} \mathrm{~N}}{80,052 \mathrm{~g} \operatorname{tatal}} \times 100 \%=35.0 \% \mathrm{~N} \\
& \% H=\frac{4.032 \mathrm{~g} \mathrm{4}}{80.052 \mathrm{gtratal}} \times 100 \%=5.0 \% \mathrm{H} \\
& \% 0=\frac{48.00 \mathrm{~g} \mathrm{O}}{80.052 \mathrm{gtatal}} \times 100 \%=\frac{60.0 \% 0}{\frac{100 \%}{10 \%}} \\
& \text { These percentages } \\
& \text { should sum to 100\% } \\
& \text { (at least, within } \\
& \text { rounding errors) }
\end{aligned}
$$

So far, we have

ch $8\left[\begin{array}{l}\text { - looked at how to determine the composition by mass of a compound } \\ \text { from a formula } \\ \text { - converted from MASS to MOLES (related to the number of atoms/molecules) } \\ \text { - converted from MOLES to MASS }\end{array}\right.$

Are we missing anything?

Sec - What about SOLUTIONS, where the desired chemical is not PURE, but 15. 4 found DISSOLVED IN WATER?
p457- - How do we deal with finding the moles of a desired chemical when it's in 462 solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{array}{r}
M=\text { MOLARITY }=\frac{\text { mules of solute }}{L \text { solution }} \\
\text { 6.0 M HCl solution: } \frac{6.0 \text { mul HCl }}{L}
\end{array}
$$

There are 6.0 moles of hydrochloric acid in each liter of this solution, so you can write this relationship another way:

$$
6.0 \text { mol } \mathrm{HCl}=1 \mathrm{~L}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{1 L}=1.5 \mathrm{~mol} \mathrm{HCl}
$$

If you need 0.657 moles of hydrochloric acid, how many milliliters do you need to measure out?

$$
\begin{gathered}
0.05 S S \mathrm{~mol} \mathrm{HCI}=1 \mathrm{~L} \\
0.657 \mathrm{~mol} \mathrm{HCI} \times \frac{1 L}{0.05 S S \text { mol } \mathrm{HCI}}=\begin{array}{l}
11.8 \mathrm{~L} \\
(11.800 \mathrm{~mL})
\end{array}
\end{gathered}
$$

too large a volume for lab-scale work!
What if we used 6.00 M HCl ?

$$
\begin{aligned}
& 6,00 \mathrm{~mol} H C=1 \mathrm{~L} \\
& 0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{1 \mathrm{~L}}{6,00 \mathrm{~mol} \mathrm{HCI}}= \\
& \begin{array}{l}
\left.\begin{array}{|l}
0,110 \mathrm{~L} \\
(110 . \mathrm{mL})
\end{array}\right] \\
\\
\text { for romeasonable volume } \\
\text { lab! }
\end{array}
\end{aligned}
$$

If you're preparing a solution by dissolving a solid in water, you can easily calculate the molaroity of the solution. How?

Just find the number of moles of solid you dissolved, then divide by the volume of the solution (expressed in liters!)

What is the molarity of a solution made by dissolving 3.50 g of NaCl in enough water to make 250. mL of solution?

$$
M=\frac{\text { moles } \mathrm{NaCl}}{\text { L solution }}
$$

Find moles of NaCl :

$$
\begin{aligned}
& \mathrm{Na}_{\mathrm{a}}: 1 \times 22.99 \\
& \mathrm{Cl}_{1}: \frac{1 \times 35.45}{58.4^{4} \mathrm{~g} \mathrm{NaCl}=1 \mathrm{~mol} \mathrm{NaCl}}
\end{aligned}
$$

$$
3,50 \mathrm{~g} \mathrm{NaCl} \times \frac{2 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}=0.05989 \mathrm{~mol} \mathrm{NaCl}
$$

$$
\begin{aligned}
& \text { Find } L \text { of solution: } m L=10^{-3} L \\
& 250 . m L \times \frac{10^{-3} L}{m L}=0,250 L
\end{aligned}
$$

$$
M=\frac{0.05989 \mathrm{mul} \mathrm{NaCl}}{0.250 \mathrm{~L}}=0.240 \mathrm{M} \mathrm{NaCl}
$$

A few more examples...
You have a 250.g bottle of silver (l) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
& \operatorname{AgCl}: \mathrm{Ag}:: \\
& \mathrm{Cl}: 1 \times 107.9 \\
& \frac{143.35 \mathrm{~g} \mathrm{AgCl}=1 \mathrm{~mol} \mathrm{AgCl}}{1435} \\
& 280 g \mathrm{AgCl} \times \frac{1 \text { mol } \mathrm{AgCl}}{143.35 g \mathrm{AgCl}}=1.74 \mathrm{~mol} \mathrm{AgCl}
\end{aligned}
$$

How many moles of NaOH are present in 155 mL of 1.50 M NaOH ?

$$
\begin{aligned}
& \text { 1. SO mol } \mathrm{NaOH}=1 \mathrm{~L} \times \frac{\mathrm{mL}}{}=10^{-3} \mathrm{~L} \\
& \text { ISS mL } \times \frac{10^{-3 L}}{m L} \times \frac{1.50 \mathrm{mul} \mathrm{NaOH}}{1 \mathrm{~L}}=0.233 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

