Find the pH and the degree of ionization for an 0.10 M solution of formic acid: $\mathrm{HCHO} \mathrm{CH}_{2}$

$$
\begin{gathered}
\mathrm{Ka}_{a}=1.7 \times 10^{-4} \mathrm{HCHHO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-} \\
\mathrm{Ka}_{\mathrm{a}}=1.7 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]}
\end{gathered}
$$

	Initial	Δ	Equilibrium
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	0	$+X$	X
$\left[\mathrm{CHO}_{2}-\right]$	0	$+X$	x
$\left[\mathrm{H}_{4} \mathrm{O}_{2}\right]$	0.10	$-X$	$0.10-x$

$$
\begin{aligned}
& 1.7 \times 10^{-4}=\frac{(x)(x)}{0.10-x} \\
& 1.7 \times 10^{-4}=\frac{x^{2}}{0,10-x}
\end{aligned}
$$

$$
\begin{aligned}
& 1.7 \times 10^{-4}= \frac{x^{2}}{0.10-x} \\
& \begin{array}{l}
\downarrow \\
1.7 \times 10^{-4}= \\
\frac{x^{2}}{0.10}
\end{array} \quad \begin{array}{l}
\text { Assume that } \\
0.10-x=0.10 \text { ' is much smaller that }
\end{array} \\
& x=0.004123=\left[4_{3} 0^{+}\right] \text {'x is indeed much smaller than } 0.10! \\
& P 4=-\log _{10}(0.004123)=2.38
\end{aligned}
$$

$$
\text { Assume that ' } x \text { ' is much smaller than } 0.10 \text {... so that }
$$

Degree of ionization? DEGREE OF IONIZATION is the fraction of a weak electrolyte (acid or base) that dissociates in water.

$$
\frac{\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]}=\frac{\left[\mathrm{H}_{\left.3 \mathrm{O}^{+}\right]}^{[\mathrm{HCHO}}{ }^{+}\right]}{0.10}=\frac{0.004123}{0.041=\mathrm{DOI}}
$$

Sometimes, we express degree of ionization as a percent ... PERCENT IONIZATION

$$
\%=D O I \times 100 \%=0.04123 \times 100 \%=4.1 \% \text { dissociated }
$$

... so about 96% of this acid exists in solution as undissociated formic acid molecules.

An aqueous solution of 0.25 M trimethylamine has a pH of 11.63. What's the value of Kb?

$$
\begin{gathered}
\frac{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}}{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-}} \\
\mathrm{K}_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}
\end{gathered}
$$

	Initial	Δ	Equilibrium
$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}{ }^{+}\right]$	0	$+X$	X
$\left[\mathrm{OH}^{-}\right]$	0	$+X$	X
$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]$	0.25	$-X$	$0.25-X$

$$
\begin{aligned}
& K_{b}=\frac{(x)(x)}{0.25-x} \\
& K_{b}=\frac{x^{2}}{0.25-x} \quad \text { So we is! }
\end{aligned}
$$

$$
\begin{array}{ll}
K_{b}=\frac{x^{2}}{0.25-x} & p H=11,63 \quad[04]=x \\
p H+p 04=14.00 \\
p O H=2.37 \\
50,[04]=10^{-2.37}=0.004266 \mathrm{~m} \\
x=0.004266 \mathrm{~m} \\
K_{b}=\frac{(0.004266)^{2}}{(0.25-0.004266)}=7.4 \times 10^{-5}=K_{b},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}
\end{array}
$$

