For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& \qquad H A+H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+A^{-} \\
& \left.\qquad \frac{\mathrm{Ka}_{a}}{\}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\frac{[\mathrm{HA}]}{\lfloor }}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \begin{array}{l}
\text { acid } \\
\text { ionization! } \\
\text { constant }
\end{array} \\
& (H A)=\text { concentration of undissociated acid }
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
& \qquad \mathrm{B}^{W}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
& \qquad \frac{\mathrm{K}_{b}}{\mathrm{~J}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the appendices, on pages A- 13 and A-14

WEAK ELECTROLYTES

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100M solution of the WEAK ACID HNO_{2}

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=5 .\left|\times 10^{-4}\right| \begin{array}{l}
\text { values for } \mathrm{Ka} \\
\text { are determined } \\
\text { experimentally }
\end{array}
\end{aligned}
$$

What is the pH of the solution?
To find the PH , we need to determine the concnetration of hydronium, $\left[\mathrm{H}_{3} \mathrm{O}^{t}\right]$...so we need to solve the equilibrium expression. But we don't know all of the concentrations AT EQUILIBRIUM to do so!
... but they ARE related!
We assume the amount of hydronium from the water

SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC	
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	0	$+X$	X	
$\left[\mathrm{NO}_{2}^{-}\right]$	0	$+X$	X	
$\left[\mathrm{HNO}_{2}\right]$	0.100	$-X$	$O, 100-X$	

... this is similar to the problems from the equilibrium chapter!

$$
\begin{aligned}
& 5.1 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{t}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& 5,1 \times 10^{-4}=\frac{(x)(x)}{(0.100-x)} \\
& \begin{array}{r}
\left.5.1 \times 10^{-4}=\frac{x^{2}}{0,100-x} \left\lvert\,-\begin{array}{l}
\text { Quadratic equation! } \\
\left\lvert\, \begin{array}{l}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}\right.
\end{array}\right.\right)
\end{array} \\
& \text { Assume that } x \ll 0.100 \\
& 5.1 \times 10^{-4}=\frac{x^{2}}{0,100} \\
& x^{2}=5.1 \times 10^{-5} \\
& x=7.14 \times 10^{-3}=\left[430^{t}\right] \\
& p H=2,15 \\
& \text { What's this? } \\
& \text { For situations where the amount } \\
& \text { of dissociated acid or base is } \\
& \text { much, much smaller than the } \\
& \text { original amount, it's safe to assume } \\
& \text { that the amount of undissociated } \\
& \text { acid remains relatively constant. } \\
& \text { In this case, } 0.100-x \text { is essentially } \\
& \text { the same thing as } 0.100 \text {. }
\end{aligned}
$$

.if we'd used the quadratic equation. our answer would have been $\mathrm{pH}=2.16$

Compare:

- Weak acid $\mathrm{HNO}_{2}: \mathrm{pH}$ of 0.10 M solution $=2.15$
-Strong acid: pH of 0.10 M solution $=1.00$

The stronger the acid, the lower the pH of a solution of given concentration will be!

Consider an 0.100 M solution of the weak base ammonia:

$$
\begin{aligned}
& \mathrm{NH}_{3}-\mathrm{K}_{b}=1.7 \mathrm{~S} \times 10^{-5} \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

What is the pH ?

$$
K_{b}=1,7 \mathrm{~S} \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

We must solve this ... for?
... for HYDROXIDE, since we can convert that to hydronium to find pH .

Species	Initial	Δ	Equilibrium
$\left[\mathrm{NH}_{4}^{+}\right]$	0	$+X$	X
$\left[\mathrm{OH}^{-}\right]$	0	$+X$	X
$\left[\mathrm{NH}_{3}\right]$	0.100	$-X$	$0.100-X$

Plug into the equilibrium expression ...

$$
1,75 \times 10^{-5}=\frac{(x)(x)}{0,100-x}=\frac{x^{2}}{0,100-x}
$$

Solve for " x "!

$$
\begin{aligned}
& 1,75 \times 10^{-5}=\frac{x^{2}}{0,100-x} \\
& \text { This is a quadratic, BUT ... x should be small } \\
& \text { compared to } 0.1 \\
& \text { Assume that } x \ll 0.100 \text {, so } 0.100-x=0 ; 100 \\
& 1.75 \times 10^{-5}=\frac{x^{2}}{0,100} \\
& 0,00132288=x=\left[\mathrm{OH}^{-}\right] \text {This number, } x \text {, is the HYDROXIDE } \\
& \text { concentration. } \\
& -\log _{10}\left[\mathrm{OH}^{-}\right]=2.88=\mathrm{pOH} \\
& \text { Now, we can find pH ... } \\
& p H+p O H=14,00 \\
& \text { so, } \\
& p H=11.12 \\
& \text { If you had used the quadratic equation } \\
& \text { to solve this problem, you would have } \\
& \text { calculated the } \mathrm{pH} \text { to be 11.12 }
\end{aligned}
$$

Compare pH to the pH of an 0.100 M solution of the strong base NaOH :

$$
\begin{gathered}
\mathrm{PH}_{\mathrm{NH}_{3}}=11.12 \\
\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
{\left[\mathrm{OH}^{-}\right]=0.100} \\
\mathrm{POH}=1.00 \\
\mathrm{PH}+\mathrm{POH}=14.00 \\
\mathrm{PH}=13.00
\end{gathered}
$$

The higher the Ka or Kb value, the stronger the acid or base!

