So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
M=\operatorname{molarit}_{y}=\frac{\text { moles of SOLUTE }}{\text { SOLUTION }}
$$

6.0 M HCl solution: $\frac{6.0 \mathrm{mul} \mathrm{HCl}}{L}$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
\begin{gathered}
6.0 \mathrm{~mol} \mathrm{HCl}=1 L \text { solution } \\
0.280 \mathrm{~L} \text { solution } \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{1 L \text { solution }}=1.5 \mathrm{~mol} \mathrm{HCl}
\end{gathered}
$$

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
0.657 \mathrm{~mol} H C 1 \times \frac{1 L .}{0.0555 \text { mol } H C 1}=\frac{11,8 L}{} 0,0555 \text { mol } H C 1=1 L
$$

What if we used 6.00 M HCl ?

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{1 \mathrm{~L}}{6.00 \mathrm{mal} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{\mathbb{N} 110 \mathrm{~mL}}
$$

(easily measured with lab glassware)

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A 1}{}=3 \text { molecules } B r_{2}=2 \text { formula units } A \mid B r_{3}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1)

$$
\begin{aligned}
& \text { Convert grams of bromine to moles: Need formula weight } \\
& 159.80 \mathrm{~g} \mathrm{Br}_{2}=1 \text { mol } \mathrm{Br} 2 \\
& 25.0 \mathrm{gBr} \times \frac{1 \text { mol } \mathrm{Br}}{2} \\
& 159.80 \mathrm{~g} \mathrm{Br}_{2}
\end{aligned}=0.15645 \mathrm{~mol} \mathrm{Br}_{2} .
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.15645 \mathrm{~mol} B r_{2} & \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}
\end{aligned}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight A|:26,918

$$
\begin{aligned}
& 26.98 \mathrm{~g} A \mid=1 \mathrm{~mol} A 1 \\
& 0.10430 \mathrm{~mol} A\left|\times \frac{26.98 \mathrm{~g} A \mid}{1 \mathrm{~mol} A \mid}=2.8\right| \mathrm{gAl}
\end{aligned}
$$

Aluminum bromide: Use conservation of mass!
$25.0 \mathrm{~g}+2.81 \mathrm{~g}=27.8 \mathrm{~g}$

You can combine all three steps on one line if you like!

$$
25.0 \mathrm{gBr} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g} r_{2}} \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}} \times \frac{26.98 \mathrm{gAl}}{1 \mathrm{~mol} A \mid}=2.81 \mathrm{gAl}
$$

$$
25.0 \text { y } B r_{2}
$$

But ...

$$
\frac{2.81 \mathrm{~g} \mathrm{Al}}{27.8 \mathrm{~g} \mathrm{AlBr}}
$$

... what would you have done to calculate the mass of alumin bromide If you had NOT been asked to calculate the mass of aluminum FIRST?

$$
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g} r_{2}} \times \frac{2 \mathrm{~mol}_{\mathrm{m} \mid B r_{3}}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.694 \mathrm{gAlBr}_{3}}{2 \mathrm{molAlBr}_{3}}=27.8 \mathrm{~g}
$$

convert mass bromine to moles

2	

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
\underline{2 \mathrm{HCl}}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NuCl}(\mathrm{aq})\right.
$$

1 - Convert mass of sodium carbonate to moles using formula weight
2 - Convert moles of sodium carbonate to moles hydrochloric acid using chemical equation
3 - Convert moles of hydrochloric acid to volume using concentration ($M=$ moles $/ \mathrm{L}$)

- Convert mass of sodium carbonate to moles using formula weight

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}: 2 \times 22.99 \\
& \text { C: } 1 \times 12,01 \\
& 105.99 \mathrm{Na}_{2} \mathrm{CO}_{3}=1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& \frac{0: 3 \times 16,00}{105.99} \\
& 25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{mal} \mathrm{Na}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S} .99 \mathrm{gan}_{2} \mathrm{CO}_{3}}=0.235871 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}_{4}(\mathrm{aq})\right.
$$

- Convert moles of sodium carbonate to moles hydrochloric acid using chemical equation

$$
\begin{array}{r}
2 \mathrm{~mol} \mathrm{HCl}=1{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}_{0.235871 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}}=0.471743 \mathrm{~mol} \mathrm{HCl}}{ }^{2} \mathrm{mCl}
\end{array}
$$

- Convert moles of hydrochloric acid to volume using concentration ($M=$ moles $/ \mathrm{L}$)

$$
\begin{gathered}
6.00 \mathrm{msl} \mathrm{HCl} \geq 1 \mathrm{~L} \\
0.471743 \mathrm{~mol} \mathrm{HCl} \times \frac{1 L \mathrm{~L}}{6.00 \mathrm{msl} \mathrm{HCl}} \times \frac{m L}{10^{-3 L}}=\begin{array}{r}
78.6 \mathrm{~mL} \mathrm{of} \\
6.00 \mathrm{~m} \mathrm{rCl}
\end{array}
\end{gathered}
$$

