VSEPR

- "Valence Shell Electron Pair Repulsion" model
- assumes that the bonded and unbonded electrons around an atom will push each other as far away as possible.
- leads to simple geometric molecular shapes!

$$
\begin{aligned}
& \text { * unpaired electrons OR bonds to } \\
& \text { other atoms }
\end{aligned}
$$

VSEPR shapes:

Groups *around central atom	Shape	Bond angles) in degrees
2	linear	180
3	trigonal planar	120
4	tetrahedral / pyramidal / bent	109.5
5	trigonal pyramidal (and derivatives)	90 and 120
6	ocrahedral (and derivatives)	90

- Sand 6 violate "octet role"

More on "4 things around a central atom":

- A compound that obeys the octet rule can have a maximum of four groups around its central atom. But we describe the molecular shape based on how ATOMS are arrnaged around the center. What if some of those groups aren't atoms, but pairs of UNSHARED electrons?

$\mathrm{M}_{2} \mathrm{O}:$
This atom is pointing out at you!

$$
\begin{aligned}
& \text { With two ATOMS } \\
& \text { and two LONE PAIRS, } \\
& \text { we call the shape } \\
& \text { "BENT" }
\end{aligned}
$$

Molecular shape? There are FOUR atoms bonded to carbon (and no lone pairs). This give a TETRAHEDRAL shape to the molecule.
CS_{2}
$c: 4$
$\because \ddot{S}=C=\ddot{S}:$ Molecular shape? There are only two things (two

NF_{3}

Molecular shape? There are three fluorine ATOMS around the nitrogen, AND a single lone pair of electrons. This means that the shape is a derivative of tetrahedral. Since there are only three ATOMS around the center, this molecule is PYRAMIDAL.

$$
\begin{aligned}
& \mathrm{C}_{2} H_{4} \\
& C: 4 \times 2 \\
& H_{1}: \frac{1 \times 4}{12}
\end{aligned}
$$

Shape? This molecule has TWO centers, so we should describe the shape of the molecule around each center! Each carbon is TRIGONAL PLANAR (surrounded by three groups!)

Intermediate step for drawing this structure:

Intermediate step for drawing this structure: $\mathrm{H}-\mathrm{C}-\mathrm{H}$
$S F_{6}$
$s: 6$
$F: \frac{7 \times 6}{48}$

Shape? This molecule has SIX fluorine atoms and no lone pairs surrounding the sulfur center. This forms an OCTAHEDRAL geometry, where atoms are 90 degrees apart!

