A small problem
The number ZERO has several uses. It may be a measured number, but it may also be a mere "placeholder" that wasn't measured at all!

So how do we tell a measured zero from a placeholder? There are a few ways:
1: BEGINNING ZEROS: Beginning zeros are NEVER considered significant.
0.159

This zero merely indicates that there is a decimal point coming up!

$$
0.0,15 \mathrm{~m}(1.5 \mathrm{~cm})
$$

These zeros are placeholders. They'll disappear if you change the UNITS of this number!

0
.00063 mm
None of these zeros are considered significant

2: END ZEROS are sometimes considered significant. They are significant if

- there is a WRITTEN decimal point in the number
- there is another written indicator that the zero is
significant. Usually this is a line drawn over or under the last zero that is significant!
$1.50, \mathrm{~km} \pm 0.01$

This zero is considered significant. There's a written decimal.
$1500 m \pm 100 \mathrm{~m}$
These zeros ARE NOT considered significant (no written decimal, and no other indication that the zeros are significant)
$1430,00,9 \pm 100 \mathrm{~g}$
-These zeros are not significant.
This zero IS significant. It's marked.

How many significant figures are there in each of these measurements?

$$
\begin{array}{lll}
\frac{76.070}{5} \mathrm{~g} \pm .001 \mathrm{~g} & \frac{85000}{5} \mathrm{~mm} \pm 1 \mathrm{~mm} & 0.00 \frac{1030}{4} \mathrm{~kg} \pm 0,000001 \mathrm{~kg} \\
\frac{156.0002}{7} \mathrm{~g} \pm 0.000 \mathrm{~g} & \frac{0.10}{2} \mathrm{~s} \pm 0.01 \mathrm{~s} & \frac{17000000 \mathrm{mg}}{2} \pm 1,000,000 \mathrm{mg} \\
\frac{120000}{4} \mathrm{~km} \pm 100 \mathrm{~km} & \frac{1350 \mathrm{~ms}}{3} \pm 10 \mathrm{~ms} & \\
\hline
\end{array}
$$

Calculations with measurements

When you calculate something using measured numbers., you should try to make sure the ANSWER reflects the quality of the data used to make the calculation.

An ANSWER is only as good as the POOREST measurement that went into finding that answer!

$$
14.206
$$

154.72
$\frac{1.6}{0.222}$
170.748
Round so that there's only one uncertain digit
in the answer!

How should we report this answer? How much uncertainty is in this answer? 170.7

* If you add an uncertain number to either a certain or an uncertain number, then the result is uncertain!
* If you add certain numbers together, the result is certain!

