Even if you're unfamiliar with the metric units involved in a problem, you can still do conversions easily.

$$
\begin{array}{ll}
88100 \mathrm{kHz} \text { to MHz } \quad k \mathrm{~Hz}_{z}=10^{3} \mathrm{~Hz} \quad M \mathrm{~Hz}_{z}=10^{6} \mathrm{~Hz} \quad \mathrm{~Hz}=\frac{1}{5} \quad(\text { frequency) } \\
88100 \mathrm{kHz} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{KHz}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz} & \\
0.004184 \mathrm{kJtoJ} \quad \mathrm{KJ}=10^{3} \mathrm{~J} & \mathrm{~J}=\text { energy } \\
0.004184 \mathrm{~kJ} \times \frac{10^{3} \mathrm{~J}}{\mathrm{KJ}}=4.184 \mathrm{~J} &
\end{array}
$$

For nurses, one use of this method is for drug calculations.

Example: A patient is ordered 40 mg of codeine phosphate by subcutaneous injection. 50 mg in 1 mL liquid is available. How much of this liquid should be administered?

$$
\begin{array}{r}
\qquad 0 m y d r u=1 m L \quad \begin{array}{l}
\text { This is a conversion } \\
\text { would use any oth }
\end{array} \\
40 \mathrm{mg} \text { d } \operatorname{tug} \times \frac{1 m L}{\int 0 m_{y} \text { drug }}=0.8 \mathrm{~mL} \text { of liquid }
\end{array}
$$

This is a conversion factor. Use it like you
would use any other conversion factor.

A client is ordered 75 mg of amoxicillin orally. 125 milligrams in 5 mL of syrup is available. How many mL will you administer?

$$
\begin{gathered}
125 m g=5 m L \\
75 m g \times \frac{5 m L}{125 m g}=3 \mathrm{~mL}
\end{gathered}
$$

Accuracy and Precision

- two related concepts that you must understand wheh working with measured numbe

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements

More on precison

Every measurement contains some amount of ERROR, or some amount of deviation from the true value of what is being measured.

RANDOM ERROR is the variability in a measurement that cannot be traced back to a single cause. Random errors cause measurements to fluctuate around the true value, but can be averaged out given enough measurements.

When reporting measurements, we want to indicate how much random error we think is present. How?

How long is the green line?
For this experiment, record your measurement in the form: X.XX cm
Write your answer on the sheet, then fold the sheet in half and pass it up to the front!

Our classroom experiment: Results

After throwing away obvious mistakes in reading the scale, we had:

When reading measurements from a scale, record all CERTAIN digits and one UNCERTAIN (or estimated) digit.

Significant figures
SIGNIFICANT FIGURES are a way to indicate the amount of uncertainty in a measurement.

The significant figures in a measurement are all of the CERTAIN DIGITS plus one and only one UNCERTAIN (or estimated) DIGIT
Example:

From our classroom experiment,
\qquad We estimated the last digit, It's uncertain

These digits were obtained in all measurements. They are certain
THIS MEASUREMENT HAS "THREE SIGNIFICANT FIGURES"!

Determining significant figures
When you read a measurement that someone has written using the significant figures convention, you can tell how precisely that measurement was made.

$$
1.47(3) \quad g \pm 0.001
$$

This was measured to the nearest $+/-0.001 \mathrm{~g}$ The last digit is always UNCERTAIN (or estimated)

$$
\text { 2(1) } m \pm 1 \quad \begin{aligned}
& \text { Some other examples } \\
& 3.2076 \mathrm{~g} \sim \pm 0.000 \mathrm{lg}
\end{aligned}
$$

$$
37.2(6) 6 y \pm 0,01
$$

Euncestain!

$$
27.3 \mathrm{Km} \sim \pm 0.1 \mathrm{~m}
$$

