...of an object

1) Measure mass of object

$$
\text { mass }=9.78 \mathrm{~g}
$$

2) Partially fill cylinder with liquid, record volume.
volume $=25.0 \mathrm{~mL}$
3) Put object into cylinder, record new volume

$$
\text { volume }=26.6 \mathrm{~mL}
$$

4) Subtract to find volume of object

$$
\begin{array}{r}
26.6 \mathrm{~mL} \\
-25.0 \mathrm{~mL} \\
\hline 1.6 \mathrm{~mL}
\end{array}
$$

5) Density = mass object / volume object

$$
\begin{aligned}
\text { Density } & =\frac{9.78 \quad \mathrm{~g}}{1.6 \mathrm{~mL}} \\
& =6.1 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

Converting from one unit to another

We will use the method of dimensional analysis, sometimes called the factor-label method.... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.

$$
\begin{aligned}
& \text { Example } \\
& \sqrt{12 \mathrm{in}=1 \mathrm{ft}}
\end{aligned}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\begin{aligned}
& \text { For example, "k, lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& K_{m}=\frac{10^{3} \mathrm{~m}}{10^{3}} \\
& K_{9}=109 \\
& K L=10^{3} L \\
& K s=10^{3} \mathrm{~s} \\
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

Convert 15.75 m to cm

$$
15.75 \mathrm{~m} \times \frac{\mathrm{cm}^{2}}{10^{-2} \mathrm{~m}}=1575 \mathrm{~cm}
$$

Put what you want to cancel or the bottom, then ...

Convert 0.01893 kg to

$$
k g=10^{3} g
$$

$$
0_{7}^{0.01893159 \times \frac{10^{3} 9}{\mathrm{Kg}}}=18.93 \mathrm{~g}
$$

Convert 14500 mg to $\mathrm{kg} \quad \mathrm{mg}=10^{-3} \mathrm{~g} \quad \mathrm{~kg}=10^{3} \mathrm{~g}$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.0145 \mathrm{~kg}
$$

Convert 0.147 mm to $\mu \mathrm{m}$

$$
m m=10^{-3} \mathrm{~m} \quad \mu m=10^{-6} \mathrm{~m}
$$

in micro-

$$
0.147 \mathrm{~mm} \times \frac{10^{-3} \mathrm{~m}}{\mathrm{~mm}} \times \frac{4 \mathrm{~m}}{10^{-6} \mathrm{~m}}=147 \mathrm{~mm}
$$

Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1$ in

$$
\begin{gathered}
2.54 \mathrm{~cm}=\mathrm{in} \quad \mathrm{~cm}=10^{-2} \mathrm{~m} \\
38.47 \mathrm{in} \times \frac{2.54 \mathrm{~cm}}{i n} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=0.9771 \mathrm{~m}
\end{gathered}
$$

Even though English units are involved, we can solve this problem the same way we solved the previous problem where only metric units were used!

