CHM 111 Take-Home Quiz Name: ______ Due next class period

Answer each question. If a calculation is required, show your work.

1,2) For the equilibrium $SO_2Cl_2(g) \leftrightarrow SO_2(g) + Cl_2(g)$ with K = 0.045, if you start with a reaction vessel containing 0.0555 <u>M</u> SO₂Cl₂, what will the concentrations of SO₂ and Cl₂ be at equilibrium?

• $[SO_2] = ___\underline{M}$ • $[Cl_2] = __\underline{M}$

3) For the equilibrium $HC_3H_5O_2(aq) \leftrightarrow H^+(aq) + C_3H_5O_2^-(aq)$ where $K = 1.3 \times 10^{-5}$, calculate the equilibrium concentration of H⁺ if you were to dissolve 0.13 moles $HC_3H_5O_2$ in 500.0 mL of water.

• $[H^+]$ at equilibrium is <u>M</u>

CHM 111 (Spring 2004) - Take-Home Quiz - Equilibrium

4) In an equilibrium between oxides of nitrogen, $N_2O_3(g) \leftrightarrow NO_2(g) + NO(g)$, with K = 0.193. If a reaction vessel contains 0.250 <u>M</u> N₂O₃, 0.225 <u>M</u> NO, and 0.147 <u>M</u> NO₂, will the reaction proceed to the left or right, or is the reaction already at equilibrium?

• The reaction _____ (proceeds to the left, proceeds to the right, is already at equilibrium)

5) Write the concentration-based equilibrium constant expressions for the following:

A) $Fe^{3+}(aq) + SCN^{-}(aq) \leftrightarrow Fe(SCN)^{2+}(aq)$; K =

B)
$$Cu(NO_3)_2(aq) + Zn(s) \leftrightarrow Cu(s) + Zn(NO_3)_2(aq)$$
; K =

C) H₃PO₄(aq) \leftrightarrow 3H⁺(aq) + PO₄³⁻(aq) ; K =

D)
$$2H_2(g) + O_2(g) \leftrightarrow 2H_2O(g)$$
; K=