Answer the question. [20]

1) The equilibrium $2 \mathrm{NOBr}(g)<-->2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g)$ has an equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ value of 3.07×10^{-4} at $24^{\circ} \mathrm{C}$. Does this reaction favor products or reactants at equilibrium?

- The equilibrium favors reactants. (K K_{c} is small).

2) Define the term chemical equilibrium.

- A state where the rate of the forward reaction is equal to the rate of reverse reaction.

Write concentration-based equilibrium constant expressions for the following reactions. [20]

3) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<-->\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{4}^{+}\right] \times\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
4) $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})<-->2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{Ag}^{+}\right]^{2} \times\left[\mathrm{CO}_{3}^{2-}\right]$
5) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<-->2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2} \times\left[\mathrm{O}_{2}\right]}$

