CHM 111

Take-Home Quiz 3 SOLUTIONS
Answer each question. If a calculation is required, show your work.
1,2) For the equilibrium $\mathrm{SO}_{2} \boldsymbol{C l}_{2}(\mathrm{~g}) \leftrightarrow \boldsymbol{S O}_{2}(\mathrm{~g})+\boldsymbol{C l}_{2}(\mathrm{~g})$ with K $=0.045$, if you start with a reaction vessel containing $0.0555 \underline{\mathrm{M}} \mathrm{SO}_{2} \mathrm{Cl}_{2}$, what will the concentrations of SO_{2} and Cl_{2} be at equilibrium?

- $\left[\mathrm{SO}_{2}\right]=\underline{\mathbf{0 . 0 3 2 3}} \underline{\mathrm{M}}$
- $\left[\mathrm{Cl}_{2}\right]=\underline{\mathbf{0 . 0 3 2 3}} \underline{\mathrm{M}}$

To solve this problem, you must first set up an equilibrium expression:

$$
K=\frac{\left[\mathrm{SO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}=0.045
$$

Now, express concentrations at equilibrium in terms of a single variable. For convenience, we'll let $\left[\mathrm{SO}_{2}\right]=x$.
$\left[\mathrm{SO}_{2}\right]=x$
$\left[\mathrm{Cl}_{2}\right]=x$; (a Cl l_{2} molecule is formed whenever an SO_{2} molecule is)
$\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]=0.0555-x$; (we start with $0.0555 \underline{\mathrm{M}} \mathrm{SO}_{2} \mathrm{Cl}_{2}$, and lose one molecule of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ whenever an SO_{2} molecule is formed)

Plugging into the equilibrium expression, we get:

$$
\frac{x^{2}}{(0.0555-x)}=0.045
$$

Rearranging into quadratic form:

$$
x^{2}+0.045 x-0.0024975=0
$$

We solve using the quadratic equation:

$$
\begin{aligned}
& \mathrm{a}=1 \\
& \mathrm{~b}=0.045 \\
& \mathrm{c}=-0.0024975 \\
& x=\frac{-0.045 \pm \sqrt{\left(0.045^{2}-(4 \times 1 \times-0.024975)\right)}}{2 \times 1}=0.0323
\end{aligned}
$$

There are two solutions to this quadratic, but since x represents a concentration, we can throw out the negative solutions. Negative concentrations do not make physical sense!

- $\left[\mathrm{SO}_{2}\right]=0.0323 \underline{\mathrm{M}}$
- $\left[\mathrm{Cl}_{2}\right]=0.0323 \underline{\mathrm{M}}$
- $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]=0.0232 \mathrm{M}$; (it wasn't necessary for this problem to calculate this one. It's for your reference)

3) For the equilibrium $\boldsymbol{H C}_{3} \boldsymbol{H}_{5} \boldsymbol{O}_{\mathbf{2}}(\boldsymbol{a q}) \leftrightarrow \boldsymbol{H}^{+}(\boldsymbol{a q})+\boldsymbol{C}_{\mathbf{3}} \boldsymbol{H}_{5} \boldsymbol{O}_{2}^{-}(\boldsymbol{a q})$ where $\mathrm{K}=1.3 \times 10^{-5}$, calculate the equilibrium concentration of H^{+}if you were to dissolve 0.13 moles $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ in 500.0 mL of water. [Hint: compare the value of K with your initial concentration!]

- $\left[\mathrm{H}^{+}\right]$at equilibrium is $\underline{\mathbf{0 . 0 0 1 8}} \underline{\mathrm{M}}$

First, we must calculate the concentration of the starting species (propionic acid):
$\left[\mathrm{HC}_{3} \mathrm{H}_{2} \mathrm{O}_{2}\right]_{\text {nitital }}=0.13$ moles $/ 0.5000 \mathrm{~L}=0.26 \underline{\mathrm{M}}$
Now that we know the initial concentration, we can set up the equilibrium expression and define equilibrium concentrations in terms of one variable as we did in the previous problem.

$$
K=\frac{\left[H^{+}\right]\left[C_{3} H_{5} O_{2}^{-}\right]}{\left[H C_{3} H_{5} O_{2}\right]}=1.3 \times 10^{-5}
$$

Now, express concentrations at equilibrium in terms of a single variable. For convenience, we'll let $\left[H^{+}\right]=x$.
$\left[\mathrm{H}^{+}\right]=x$
$\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=x$
$\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.26-x$
Plugging into the equilibrium expression, we get:

$$
\frac{x^{2}}{(0.26-x)}=1.3 \times 10^{-5}
$$

Rearranging into quadratic form:

$$
x^{2}+0.000013 x-0.00000338=0
$$

We solve using the quadratic equation:
$\mathrm{a}=1$
$\mathrm{b}=0.000013$
$\mathrm{c}=-0.00000338$

$$
x=\frac{-0.000013 \pm \sqrt{\left(0.000013^{2}-(4 \times 1 \times-0.00000338)\right)}}{2 \times 1}=0.00183
$$

There are two solutions to this quadratic, but since x represents a concentration, we can throw out the negative solutions. Negative concentrations do not make physical sense!

- $\left[\mathrm{H}^{+}\right]=0.0018 \underline{\mathrm{M}}$
- $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}\right]=0.0018 \underline{\mathrm{M}}$
- $\left[\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right]=0.26-0.0018=0.2582=0.26 \underline{\mathrm{M}}$ (to two significant figures)

Note that the concentration of acetic acid did not change significantly. This will become important in Chapter 17!
4) In an equilibrium between oxides of nitrogen, $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\boldsymbol{N O}(\mathrm{g})$, with $\mathrm{K}=$ 0.193. If a reaction vessel contains $0.250 \underline{\mathrm{M}} \mathrm{N}_{2} \mathrm{O}_{3}, 0.225 \underline{\mathrm{M}} \mathrm{NO}$, and $0.147 \underline{\mathrm{M}} \mathrm{NO}_{2}$, will the reaction proceed to the left or right, or is the reaction already at equlibrium?

- The reaction proceeds to the right.

To solve this problem, you must calculate the reaction quotient Q and compare it to the value of the equilibrium constant K. The reaction quotient takes the same form as K.

$$
Q=\frac{\left[\mathrm{NO}_{2}\right][\mathrm{NO}]}{\left[\mathrm{N}_{2} \mathrm{O}_{3}\right]}=\frac{(0.147) \times(0.225)}{0.250}=0.132
$$

$\mathrm{Q}=0.132$
$\mathrm{K}=0.193$

- $\mathrm{Q}<\mathrm{K}$, so the reaction will proceed to the right to produce more products.

5) Write the concentration-based equilibrium constant expressions for the following:
A) $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrow \operatorname{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})$

- $K=\frac{\left[F e(S C N)^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$

$$
\text { B) } \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \leftrightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

- $K=\frac{\left[\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right]}{\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right]}$
C) $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \leftrightarrow 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
- $K=\frac{\left[\mathrm{H}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]}$
D) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$

