CHM 110

Stoichiometry Set

SOLUTIONS

Solve the following problems Write the answer in the answer blank, and show work in the space provided.

1) What mass of TiO_{2} would (given enough carbon and chlorine) be required to produce 45.0 g of TiCl_{4} in the following reaction?

$$
\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiCl}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Answer: $18.9 \quad \mathrm{~g} \mathrm{TiO}_{2} \mathrm{TiO}_{2}: 79.87 \mathrm{~g} \mathrm{TiO}_{2}=\mathrm{mol} \mathrm{TiO} 2$

$$
\begin{aligned}
& \mathrm{TiCl}_{4}: 189.67 \mathrm{~g} \mathrm{TiCl}_{4}=\operatorname{mol} \mathrm{TiCl}_{4} \\
& \operatorname{mol} \mathrm{~T}_{2}=\operatorname{mol} \mathrm{T}_{1} \mathrm{Cl}_{4}
\end{aligned}
$$

$$
4 \mathrm{SOO}_{\mathrm{g}} \mathrm{~T}: \mathrm{Cl}_{4} \times \frac{\mathrm{molTiCl}}{189.67 \mathrm{~g} \mathrm{TiCl}} 4 \times \frac{\mathrm{mol} \mathrm{TiO}_{2}}{\mathrm{~mol} \mathrm{~T}_{1} \mathrm{Cl}_{4}} \times \frac{79.87 \mathrm{~g} \mathrm{TiO}_{2}}{\mathrm{~mol} \mathrm{TiO}_{2}}=
$$

2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns in air to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. What mass of water can be produced when 75.0 grams of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns in sufficient oxygen?

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Answer: $88.0 \quad \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \begin{aligned} & \mathrm{C}_{2} H_{s} \mathrm{OH}: 46.068 \mathrm{gC} \mathrm{C}_{2} \mathrm{OH}=\operatorname{mol~} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ & \mathrm{H}_{2} \mathrm{O}: 18.01 \mathrm{GgH}_{2} \mathrm{O}=\mathrm{mol} \mathrm{H}\end{aligned}$

$$
\operatorname{mol} C_{2} H_{S} O H=3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

$75 . \mathrm{Og}_{6} \mathrm{H}_{5} \mathrm{OH} \times \frac{\mathrm{molC}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.068 \mathrm{gC}_{2} \mathrm{H}_{5} \mathrm{OH}} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{mol}_{2} \mathrm{H}_{5} \mathrm{OH}} \times \frac{18.01 \mathrm{GgH}_{2} \mathrm{O}}{\mathrm{mol} \mathrm{H}}=$
3) How many mL of $6.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to react with 50.0 mL of 2.00 M NaOH ?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Answer: \qquad 8.33 $\mathrm{mL}_{6.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} 6.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{Sd}_{4}=\mathrm{L}, ~}^{\mathrm{K}}$

$$
\begin{aligned}
& 2.00 \mathrm{~mol} \mathrm{NaOH}_{\mathrm{al}}=L \\
& \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{SO} .0 \mathrm{~mL} \times \frac{2.00 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~L}} \times \frac{\mathrm{mal} \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{molNaOH}_{2}} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}= \\
& \text { (since "m"isn't cancel ed, final answer is in mL) }
\end{aligned}
$$

4) What is the maximum mass of tungsten (W) that could be produced by reacting $150.0 \mathrm{~g}^{\text {of } \mathrm{WO}_{3}}$ with $50 . \mathrm{g}^{\text {of }} \mathrm{H}_{2}$ in the following reaction?

$$
\mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}
$$

Answer: \qquad g W
$w: 183.84 \mathrm{~g} w=$ mol w
$\mathrm{WO}_{3}: 231.84_{g} \mathrm{WO}_{3}=\operatorname{mol} \mathrm{WO}_{3}$

$$
\mathrm{H}_{2}: 2.01 \mathrm{ggH}_{2}=\operatorname{mol~H}
$$

$$
\operatorname{mol} \omega \sigma_{3}=\operatorname{mol} w
$$

$3 \operatorname{mol} \mathrm{H}_{2}=\operatorname{mol} \mathrm{W}$

$$
\begin{aligned}
& 150 . \mathrm{g} \mathrm{WO}_{3} \times \frac{\mathrm{mol} \mathrm{WO}_{3}}{231.84_{\mathrm{g}} \mathrm{WO}_{3}} \times \frac{\mathrm{mol} \mathrm{~W}}{\mathrm{~mol} \mathrm{Wo}_{3}} \times \frac{183.84 \mathrm{~g} \mathrm{w}}{\mathrm{~mol} \mathrm{~W}}=118.9 \mathrm{gW} \\
& 50 . \mathrm{g} \mathrm{H}_{2} \times \frac{\mathrm{mol} \mathrm{H}}{2.016 \mathrm{gH}_{2}} \frac{\operatorname{mol} \mathrm{~W}}{3 \mathrm{~mol} \mathrm{H}} \frac{183.84 \mathrm{~g} \mathrm{~W}}{\operatorname{mol} \mathrm{~W}}=1800 \mathrm{gW}
\end{aligned}
$$

