CHM 110

Molarity Practice Set

Problem

A solution is prepared by dissolving 3.5137 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ into enough water to make 250.0 mL of solution. What is the molar concentration of this solution?

Solution
Since molarity is defined as moles of solute per liter of solvent, calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Then divide by the volume of the solution.

Find the moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

$$
3.5137 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=3.3151 \times 10^{-2} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

Divide by the volume of the solution (in liters).

$$
\frac{3.3151 \times 10^{-2} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{0.2500 \mathrm{~L}}=\mathbf{0 . 1 3 2 6} \mathbf{M ~ N a}_{2} \mathbf{C O}_{\mathbf{3}}
$$

Problem
250.0 mL of a 0.0575 M solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is evaporated to dryness. How many grams of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ solid can be recovered?

Solution

Molarity can be used to convert between solution volume and moles. So find the moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in the solution, then change to grams.

$$
0.2500 \mathrm{~L} \times \frac{0.0575 \text { moles } \mathrm{Na}_{3} \mathrm{PO}_{4}}{\mathrm{~L}} \times \frac{163.94 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}}{\mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}=\mathbf{2 . 3 6} \mathbf{g ~ N a}_{\mathbf{3}} \mathbf{P O}_{\mathbf{4}}
$$

Problem

Hydrochloric acid reacts with sodium carbonate by this reaction.

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})
$$

If it takes 34.2 mL of HCl solution to completely react with 2.00 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. What is the molar concentration of the HCl solution?

Solution

This is a stoichiometry problem, much like the stoichiometry problems you have solved before. First, convert the grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to moles. Then, use the chemical equation to relate moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to moles of HCl . Finally, divide the moles of HCl by the volume of the HCl to find the molarity.

$$
2.00 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}^{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=3.773 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}}{}
$$

Remember to convert the volume to liters!

$$
\frac{3.773 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}}{0.0342 \mathrm{~L}}=\mathbf{1 . 1 0} \mathbf{M ~ H C l}
$$

