A limiting reactant problem

Sodium phosphate reacts with calcium nitrate in the reaction below.

$$
2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

If you start with $250 . \mathrm{g}$ of each reactant in the reaction above, how much $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ can you prepare?

Answer and solution

- You can prepare $\underline{158} \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

First, find formula weights of the compounds of interest:

$\mathrm{Na}_{3} \mathrm{PO}_{4}$	$163.94 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$164.10 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$310.18 \mathrm{~g} / \mathrm{mol}$

This is a limiting reactant problem, since we were given amounts of more than one reactant. To solve it, find the amount of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that could be produced from each reactant.

$$
\begin{aligned}
& 250 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4} \times \frac{\mathrm{mol}}{163.94 \mathrm{~g}} \times \frac{1 \mathrm{molCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{2 \mathrm{molNa}_{3} \mathrm{PO}_{4}} \times \frac{310.18 \mathrm{~g}}{\mathrm{~mol}}=237 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& 250 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{\mathrm{mol}}{164.10 \mathrm{~g}} \times \frac{1 \mathrm{molCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{molCa}^{\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{310.18 \mathrm{~g}}{\mathrm{~mol}}=158 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}
\end{aligned}
$$

Since the reaction stops when we run out of one reactant, we can only produce 158 g of product. Calcium nitrate is the limiting reactant.

CHM 110 - Limiting Reactant / Percent Yield Samples (r13)
A simple stoichiometry problem
Ammonia $\left(\mathrm{NH}_{3}\right)$ can be made from this reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

How much hydrogen gas do you need to produce 250. g of NH_{3} ?
Answer and solution

- You need $44.5 \mathrm{~g} \mathrm{H}_{2}$.

Formula weights:

NH_{3}	$17.03 \mathrm{~g} / \mathrm{mol}$
H_{2}	$2.02 \mathrm{~g} / \mathrm{mol}$

This is a simple 3-step stoichiometry problem. Solve with dimensional analysis.

$$
250 \mathrm{~g} \mathrm{NH}_{3} \times \frac{\mathrm{mol}}{17.03 \mathrm{~g}} \times \frac{3 \mathrm{molH}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{2.02 \mathrm{~g}}{\mathrm{~mol}}=44.5 \mathrm{~g} \mathrm{H}_{2}
$$

Percent yield problem

Sodium and water react violently to produce sodium hydroxide and hydrogen gas.

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

If you start with $250 . \mathrm{g} \mathrm{Na}$ metal and produce 375 g NaOH , what is the percent yield of the reaction?

Answer and solution

- The percent yield is $\mathbf{8 6 . 2} \%$.

Formula weights:

Na	$22.99 \mathrm{~g} / \mathrm{mol}$
NaOH	$40.00 \mathrm{~g} / \mathrm{mol}$

First, find the theoretical yield using dimensional analysis.

$$
250 \mathrm{~g} \mathrm{Na} \times \frac{\mathrm{mol}}{22.99 \mathrm{~g}} \times \frac{2 \mathrm{molNaOH}}{2 \mathrm{~mol} \mathrm{Na}} \times \frac{40.00 \mathrm{~g}}{\mathrm{~mol}}=435 \mathrm{~g} \mathrm{NaOH}
$$

Then, calculate the percent yield.

$$
\frac{375 \mathrm{~g}}{435 \mathrm{~g}} \times 100 \%=86.2 \%
$$

