Solve the problems.

1) 17.5 g of uranium is converted to the gas uranium (VI) fluoride in the following reaction:

$$
\mathrm{U}(\mathrm{~s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{UF}_{6}(\mathrm{~g})
$$

What volume of gas is produced at 0.983 atm by this reaction if the temperature is 50.0 ${ }^{\circ} \mathrm{C}$?

- $\quad 1.98$ \qquad $\mathrm{L} \mathrm{UF}_{6}$ gas produced.

Complete solution:
First, find out how many moles of UF_{6} gas are produced using the formula weight of uranium and stoichiometry.

$$
17.5 \mathrm{~g} \mathrm{U} \times \frac{1 \mathrm{~mol}}{238.0 \mathrm{~g}} \times \frac{1 \mathrm{molUF}_{6}}{1 \mathrm{~mol} \mathrm{U}}=0.0735294 \mathrm{~mol} \mathrm{UF}_{6}
$$

Next, use the ideal gas law, $\mathrm{PV}=\mathrm{nRT}$, to find the volume.

$$
\left.\begin{array}{lc}
\begin{array}{l}
\mathrm{P}=0.983 \mathrm{~atm} \\
\mathrm{~V}=?
\end{array} & \mathrm{n}=0.0735294 \mathrm{~mol} \\
\mathrm{~T}=50^{\circ} \mathrm{C}=323 \mathrm{~K}
\end{array}\right] \begin{aligned}
& (0.0735294 \mathrm{~mol}) \times\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \times(323 \mathrm{~K}) \\
& \\
& \\
&
\end{aligned} \mathrm{V}=\frac{(0.983 \mathrm{~atm})}{}=1.98 \mathrm{~L} \mathrm{~L} .
$$

2) One method for refining iron ore (primarily $\mathrm{Fe}_{2} \mathrm{O}_{3}$) involves using a blast furnace to react the iron ore with carbon monoxide to produce iron.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

What volume of carbon dioxide gas (at 2.50 atm and $300.0^{\circ} \mathrm{C}$) is produced when 6413 grams of pure Fe is made?

- _ 3240 L of CO_{2} is produced.

Complete solution:
First, find the number of moles of carbon dioxide gas produced using the formula weight of iron and stoichiometry.

$$
6413 \mathrm{~g} \mathrm{Fe} \times \frac{1 \mathrm{~mol}}{55.85 \mathrm{~g}} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{molFe}}=172.2381 \mathrm{~mol} \mathrm{CO}_{2}
$$

Next, use the ideal gas law to find the volume of the CO_{2} gas.

$$
\left.\begin{array}{lc}
\begin{array}{l}
\mathrm{P}=2.50 \mathrm{~atm} \\
\mathrm{~V}=?
\end{array} & \mathrm{n}=172.2381 \mathrm{~mol} \\
\mathrm{~T}=300.0^{\circ} \mathrm{C}=573.2 \mathrm{~K}
\end{array}\right] \begin{aligned}
& (2.50 \mathrm{~atm}) \\
& \\
& \\
& \mathrm{V}=\frac{(172.2381 \mathrm{~mol}) \times\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \times(573.2 \mathrm{~K})}{(2)}=3240 \mathrm{~L}
\end{aligned}
$$

3) What pressure would be produced by 15.5 grams of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ contained in a 10.0 L container kept at $21.0^{\circ} \mathrm{C}$?

- $\quad \underline{0.528}$ atm pressure from the Cl_{2}.

Complete solution:

Use the formula weight to find out how many moles of Cl_{2} gas are present, then use $\mathrm{PV}=\mathrm{nRT}$ to find the pressure.

$$
\begin{array}{r}
15.5 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{molCl}_{2}}{70.90 \mathrm{~g}}=0.21862 \mathrm{molCl}_{2} \\
\mathrm{P}=? \\
\mathrm{~V}=10.0 \mathrm{~L} \\
\mathrm{n}=0.021862 \mathrm{~mol} \\
\mathrm{~T}=21.0^{\circ} \mathrm{C}=294.2 \mathrm{~K} \\
\mathrm{P}=\frac{(0.21862 \mathrm{~mol}) \times\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \times(294.2 \mathrm{~K})}{(10.0 \mathrm{~L})}=0.528 \mathrm{~atm}
\end{array}
$$

