CHM 110

Gas Laws Practice Set

Solve the following problems Write the answer in the answer blank, and show work in the space provided.

	gas would (given enough carbon and chlorine) be produced at 504 of 45.0 g of TiO ₂ in the following reaction?	C and
	$TiO_2(s) + C(s) + 2Cl_2(g) \rightarrow TiCl_4(g) + CO_2(g)$	
Answer:	L CO ₂	
	to form CO ₂ and H ₂ O. What volume of carbon dioxide gas (at 25.0° ed when 55.0 grams of C ₂ H ₅ OH burns in sufficient oxygen?	C and
	$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$	
Answer:	L CO ₂	

3) What mass of ma following reaction?		equired to produ	ce 475 L of amm	onia gas at STP v	via the			
$Mg_3N_2(s) + 6H_2O(l) \rightarrow 3Mg(OH)_2(s) + 2NH_3(g)$								
Answer:		$g Mg_3N_2$						
4) A 4.50 L flask conitrogen gas inside		gas (N ₂) at 0.97	9 atm and 30.0 °C	C. What is the ma	ass of			
Answer:		_g N ₂						