CHM 110
Gas Laws Practice Set
SOLUTIONS

Solve the following problems Write the answer in the answer blank, and show work in the space provided.

1) What volume of CO_{2} gas would (given enough carbon and chlorine) be produced at $504{ }^{\circ} \mathrm{C}$ and 1.10 atm by the reaction of 45.0 g of TiO_{2} in the following reaction?

$$
\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiCl}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Answer: \qquad LCO_{2}

$$
\begin{aligned}
& 79.87 \mathrm{~g} \mathrm{TiO}_{2}=\mathrm{mol} \mathrm{TiO} \mathrm{O}_{2} \mathrm{moltiO} 2=\mathrm{mol} \mathrm{CO} 2 \\
& 4 \mathrm{~S} . \mathrm{O}_{\mathrm{g}} \mathrm{TiO}_{2} \times \frac{\mathrm{mol} \mathrm{TiO}}{79.8 \mathrm{~g} \mathrm{TiO}_{2}} \times \frac{\mathrm{mol} \mathrm{CO}}{\mathrm{~mol} \mathrm{TiO}}=2.56341555 \mathrm{~mol} \mathrm{CO} \\
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{ll}
n=0.56341555 \mathrm{~mol} \mathrm{CO}_{2} & T=504{ }^{\circ} \mathrm{C}=777 \mathrm{~K} \\
R=0.08206 \mathrm{Lantm} \\
\mathrm{~mol} \cdot \mathrm{~K} & P=1.10 \mathrm{~atm}
\end{array}\right. \\
& V=\frac{\left(0.56341555 \mathrm{~mol}(0) 20.08206 \frac{\mathrm{Lavim}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(777 \mathrm{~K})}{(1.10 \mathrm{ot} \mathrm{n})}=32.657931639 \mathrm{~L}
\end{aligned}
$$

2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns in air to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. What volume of carbon dioxide gas (at $25.0^{\circ} \mathrm{C}$ and 1.07 atm) can be produced when 55.0 grams of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ burns in sufficient oxygen?

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(l)
$$

Answer: \qquad LCO_{2}

$$
\begin{aligned}
& 46.068 \mathrm{~g}_{2} \mathrm{H}_{5} \mathrm{OH}=\mathrm{mal} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad 2 \mathrm{~mol} \mathrm{CO} 2=\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& 5 \mathrm{~S}, \mathrm{O} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{\mathrm{mulC}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.068 \mathrm{~g}_{2} \mathrm{H}_{5} \mathrm{OH}} \times \frac{2 \mathrm{ndCO}_{2}}{\mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=2.387774594 \mathrm{~mol} \mathrm{CO} \\
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{ll}
n=2.387774594 \mathrm{~mol}\left(\mathrm{CO}_{2} \quad R=0.08206 \frac{\mathrm{loutm}}{\mathrm{~mol} \cdot \mathrm{k}}\right.
\end{array}\right. \\
& \left.T=25,0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \quad P=1.0\right) \mathrm{arm} \\
& V=\frac{\left(2.387774594 \mathrm{~mol}\left(\mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})\right.}{(1.0) \mathrm{arm})}=54.607048175 \mathrm{~L}
\end{aligned}
$$

3) What mass of magnesium nitride is required to produce 475 L of ammonia gas at STP via the following reaction??

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Answer: \qquad $\mathrm{g} \mathrm{Mg}_{3} \mathrm{~N}_{2}$

$$
\begin{aligned}
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
P=1.00 \mathrm{chm} V=47 \mathrm{~K} L \\
T=00 \mathrm{C}=273.1 \mathrm{SK}
\end{array} \quad R=0.08206 \frac{\mathrm{Lath} \mathrm{~m}}{\mathrm{~mol} \cdot \mathrm{~K}}\right. \\
& n_{\mathrm{NH}_{3}}=\frac{(1.00 \mathrm{chm})(475 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Loutm}}{\mathrm{~mol}_{\mathrm{ol}} \mathrm{~K}}\right)(273.1 \mathrm{~S} \mathrm{~K})}=21.191460653 \mathrm{~mol} \mathrm{NH}
\end{aligned}
$$

$100.95 \mathrm{~g} \mathrm{Mg}_{3} \mathrm{~N}_{2}=\operatorname{mol} \mathrm{mg}_{3} \mathrm{~N}_{2} \quad 2 \mathrm{~mol} \mathrm{NH}_{3}=\mathrm{mol} \mathrm{mg}_{3} \mathrm{~N}_{2}$

$$
21.191460653{\mathrm{~mol} \mathrm{NH}_{3}}^{2} \frac{\mathrm{~mol} m_{g 3} N_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{100.9 \mathrm{gg}_{\mathrm{g}} \mathrm{~m}_{3} N_{2}}{\mathrm{~mol} \mathrm{mg}_{3} N_{2}}=\frac{1069.63897}{\mathrm{~g} \mathrm{Mg} \mathrm{M}_{2}}
$$

4) A 4.50 L flask contains pure nitrogen gas $\left(\mathrm{N}_{2}\right)$ at 0.979 atm and $30.0^{\circ} \mathrm{C}$. What is the mass of nitrogen gas inside the flask?

Answer: \qquad

$$
4.96
$$

$$
\mathrm{g} \mathrm{~N}_{2}
$$

$$
\begin{aligned}
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
P=0.979 \mathrm{arm} V=4.50 \mathrm{~L} \\
R=0.08206 \frac{\mathrm{Laram}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad T=30.0^{\circ} \mathrm{C}=303.2 \mathrm{~K} \\
n_{N_{2}}=\frac{(0.979 \mathrm{arm})(4.50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{hamm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(303.2 \mathrm{~K})}=0.177065723 \mathrm{~mol} \mathrm{~N}
\end{array} .\right.
\end{aligned}
$$

$$
28,02 \mathrm{~g} \mathrm{~N}_{2}=\operatorname{mol} \mathrm{N}_{2}
$$

$0.177065723 \mathrm{~mol}_{2} \times \frac{28,02 \mathrm{~g} \mathrm{N/2}}{\mathrm{~mol} \mathrm{Nz}}=4.961381546 \mathrm{~g}$

