CHM 100

Chapter 8 Study Guide / Learning Objectives
Chapter 8 in your textbook deals with the mole concept. The mole is important in chemical calculations because (as a number of atoms) it relates directly to the coefficients in chemical equations. We discussed what a mole was, and how to relate it to the mass of a substance using formula weight. We also discussed how to determine the percentage composition by mass of a substance.

You are responsible for all the material in sections 8.1 through 8.6. Read the other sections, but don't worry about doing these calculations. I will not hold you responsible for the calculations in sections 8.7-8.9.

At the end of this chapter, you should be able to ...

[Terminology]

- Define terms related to the mass of atoms and molecules: formula weight, molecular weight.
- Define a mole and molar mass.
- Define percentage composition.

[Formula weight]

- Calculate the formula weights of atoms, molecules, or ionic compounds given the chemical formula and a periodic table.
[The mole]
- Calculate the molar mass of a compound. (Hint: This is the same thing as calculating its formula weight)
- Calculate the moles of formula units in a given mass of compound.
- Calculate the grams of a compound necessary to have a given number of moles.

[Percentage composition]

- Calculate the percentage composition of a compound given its chemical formula. Example: What is the percentage of oxygen (by mass) in magnesium oxide, MgO ?

[Practice]

- (p181a-181d) Q\&P 10, 14, 20, 22, 28, 30, 34, 36, 38, 44, 46, 50
- A few extra practice problems are included with this study guide.

Find the molar mass of ...	Answers
MgCl_{2}	95.21 g
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	148.33 g
Mg	24.31 g
$\mathrm{C}_{2} \mathrm{H}_{4}$	28.05 g

Find the number of moles in ...	Answers
$15.0 \mathrm{~g} \mathrm{MgCl}_{2}$	0.158 mol MgCl

Find the mass of...	Answers
$1.50 \mathrm{~mol} \mathrm{MgCl}_{2}$	143 g MgCl
$0.0421 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	$6.24 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
4.215 mol Mg	102.5 g Mg
$1.4 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}$	$3.9 \times 10^{-2} g^{2} \mathrm{C}_{2} \mathrm{H}_{4}(0.039 \mathrm{~g})$

What is the percentage composition by mass of ...	Answers
Oxygen in MgO	39.7% O by mass
Fluorine in MgF_{2}	61.0% F by mass

