CHM 101 - Chapter 8 Study Guide (r15)

CHM 100 Chapter 8 Study Guide / Learning Objectives

Chapter 8 in your textbook deals with the mole concept. The mole is important in chemical calculations because (as a number of atoms) it relates directly to the coefficients in chemical equations. We discussed what a mole was, and how to relate it to the mass of a substance using formula weight. We also discussed how to determine the percentage composition by mass of a substance.

You are responsible for all the material in sections 8.1 *through 8.6*. Read the other sections, but don't worry about doing these calculations. I will not hold you responsible for the calculations in sections 8.7 - 8.9.

At the end of this chapter, you should be able to ...

[Terminology]

- Define terms related to the mass of atoms and molecules: formula weight, molecular weight.
- Define a mole and molar mass.
- Define percentage composition.

[Formula weight]

• Calculate the **formula weights** of **atoms**, **molecules**, or **ionic compounds** given the chemical formula and a periodic table.

[The mole]

- Calculate the **molar mass** of a compound. (*Hint: This is the same thing as calculating its formula weight*)
- Calculate the moles of formula units in a given mass of compound.
- Calculate the grams of a compound necessary to have a given number of moles.

[Percentage composition]

• Calculate the **percentage composition** of a compound given its chemical formula. *Example: What is the percentage of oxygen (by mass) in magnesium oxide, MgO?*

[Practice]

- (p181a-181d) Q&P 10, 14, 20, 22, 28, 30, 34, 36, 38, 44, 46, 50
- A few extra practice problems are included with this study guide.

Find the molar mass of	Answers
MgCl ₂	95.21 g
Mg(NO ₃) ₂	148.33 g
Mg	24.31 g
C ₂ H ₄	28.05 g

Find the number of moles in	Answers
15.0 g MgCl ₂	0.158 mol MgCl ₂
173.5 g Mg(NO ₃) ₂	1.170 mol Mg(NO ₃) ₂
$1.4 x 10^3 g C_2 H_4$	$5.0x10^{1} mol C_{2}H_{4}$
24.02 g C	2.000 mol C

Answers
143 g MgCl ₂
6.24 g Mg(NO ₃) ₂
102.5 g Mg
$3.9x10^{-2} g C_2 H_4 (0.039 g)$

What is the percentage composition by mass of	Answers
Oxygen in MgO	39.7% O by mass
Fluorine in MgF ₂	61.0 % F by mass